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Abstract

In rocket engines, dense oxygen is injected in a high pressure environment, above
its critical pressure. Oxygen temperature varies from a subcritical to a supercritical
value. Thermodynamics, mixing and transport properties are no longer those of a
perfect-gas mixture. The present study uses the Large Eddy Simulation code AVBP,
developed at CERFACS to simulate such jets. Dense fluid flows are modelled by the
use of a cubic equation of state, in conjunction with appropriate viscosity and ther-
mal conductivity coefficients. A nitrogen round jet at supercritical pressure injected
in a gaseous reservoir is simulated. Two cases are considered, one experiencing a
transcritical injection (high-density injection), while the other one is injected at su-
percritical temperature (low-density injection). Mixing efficiency is studied and the
stabilizing effect of the density gradients is identified. Results are in good agreement
with available measurements. The funding for this research is provided by Snecma
and CNES.

In rocket engines, dense oxygen is injected in a high pressure environment, typically above
its critical pressure. Oxygen temperature varies from a subcritical to a supercritical value.
In order to understand the physics of high-pressure flows in complex configurations, the
development of a CFD code for predicting the flow features is of great interest and of
great need, especially for long lasting development cycles as in the aerospace industry.
For this reason Snecma, which is the prime contractor for European launcher Ariane 5
cryogenic propulsion systems and CNES (Centre National d’Etudes Spatiales), which is
the government agency responsible for shaping and implementing France’s space policy in
Europe, have launched a program on the development of LES for supercritical combustion.

For a proper description of supercritical (SC) fluid dynamics, two major modifications
must be made to the standard low-pressure Navier Stokes equations:
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• An equation of state (EOS) that accounts for real-gas effects must be implemented.

• Transport models for mass and heat transfers must be modified.

These models (EOS and transport) are to be made consistent through the appropriate
thermodynamic relations. The equation of state can be considered as the cornerstone of
SC fluid modeling for it ensures the accuracy of the method in a quiescent fluid. Indeed,
basic thermodynamic variables such as the density or the pressure dependence of the heat
capacities are directly driven by the EOS. From a practical point of view, the equation
of state must compromise between accuracy and computational cost, leading to cubic
equations of state.

This paper is organized as follows : real-gas models are presented in Section 1, then
the flow configuration and the numerical setup of the present simulation is presented in
Section 2. Finally results are discussed in Section 3.

1 REAL GAS MODEL

In this section, two key ingredients of the numerical simulation of supercritical flows are
presented: the equation of state (EOS) and the model for transport phenomena. In this
work, the Peng-Robinson equation of state [1] was chosen for this work and has been
implemented in the AVBP LES solver [2]. For a single species, it reads:

P =
ρrT

1−bρ
−

ρ2a(T )

1 + 2bρ−b2ρ2
(1)

where P is the pressure, T the temperature, ρ the density and r = R/W with R being
the perfect-gas constant and W the molar mass. The coefficients a(T ) and b are defined
as:

a(T ) = 0.457236
(rTc)

2

Pc

[
1 + c

(
1−
√
T

Tc

)]2

(2)

b = 0.077796
rTc
Pc

(3)

where Pc is the critical pressure, Tc the critical temperature and the additional parameter
c is defined as a function of the acentric factor ωac by:

c = 0.37464 + 1.54226ωac−0.26992ω2
ac (4)

Equation 1 is then used for a consistent derivation of the pressure dependence of thermo-
dynamic coefficients (heat capacities, compressibility, speed of sound, etc.), as presented
by Miller et al. [3], and the low-pressure reference is provided by the JANAF thermochem-
ical tables [4]. The performance of this model for the present study is illustrated in Fig. 1
by comparing the density and the constant-pressure heat capacity Cp with data from
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(a) Density (b) Constant pressure heat capacity

Figure 1: Validation of the EOS and thermodynamics for N2 at 40 bars (PcN2
= 34 bars,

TcN2
= 126K) : NIST database; real-gas model, based on the PR EOS [1]

the NIST database [5] at 40 bars and within the temperature range of the experimental
conditions presented in Section 2.

The relative error is less than 3% for the density and 10% for the heat capacity, except
near the pseudo-boiling line (c.f. Fig. 1 (b) around 130 K) where the error locally increases
to 5% for the density and 20% for the heat capacity. The pseudo-boiling temperature Tpb
is the temperature for which, at a given pressure, the constant-pressure heat capacity Cp
reaches its maximum; it is the prolongation of the gas/liquid phase-change line.

Harstad and Bellan [6] proposed a formulation of transport phenomena under super-
critical conditions consistent with kinetic theory at low-pressure. For the configuration
considered in this work (c.f. Section 2), many simplifications can be made. Indeed, for
single-species calculations, the only term that remains in the heat flux qi is the classical
Fickian contribution:

qi = λ
∂T

∂xi
(5)

where λ is the thermal conductivity. The method proposed by Chung et al. [7] is used
to compute the transport coefficients: the thermal conductivity and the dynamic viscos-
ity μ. This method is based on the kinetic theory of gases, empirically corrected at high
pressures.

These coefficients compare favorably with the NIST database within the thermody-
namic conditions of this study (Fig. 2). Altogether, this model provides a quantitative
evaluation of thermodynamic variables over a wide range of pressure (not shown here)
and temperature. Noteworthy, it naturally degenerates toward perfect-gas behavior when
the pressure is decreased.
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(b) Thermal Conductivity

Figure 2: Validation of the transport coefficients : NIST database; Chung
et al. [7]

Figure 3: Sketch of the configuration

2 FLOW CONFIGURATION

The configuration for the numerical simulations is the experimental setup of Mayer et
al. [8]. It consists of a single round jet (diameter 2.2 mm) injected in a cylindrical chamber
(diameter 122 mm) pressurized at 39.7 bar at a temperature of 298 K (Fig. 3).

2.1 Thermodynamic Conditions

Two cases with a different inlet temperature were computed and are presented in Table 1.
The two cases are numbered according to Mayer et al. [8].

Case 3 is a so-called «transcritical» injection: the injected fluid is evolving from a
liquid-like state (high density) to a gas-like state (low density) after being heated up by

Case Tinj [K] uinj[m/s] T/Tpb ρinj/ρ∞ Reinj
3 126.9 4.9 0.98 9.6 1.7 105

4 137 5.4 1.06 3.7 1.6 105

Table 1: Operating conditions for cases 3 and 4 of Mayer et al. [8]
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(a) Density (b) Constant-pressure heat capacity

Figure 4: Injection conditions for case 3 and case 4

the ambient hot gas. A large amount of energy is needed to change the jet temperature,
as indicated in the Cp peak near the pseudo-boiling temperature Tpb in Fig. 4b.

The injection temperature of case 4 is very similar to case 3, however it is above the
pseudo-boiling temperature (Tpb = 129.5K at 39.7 bar for nitrogen), which is reduces the
difference with a perfect-gas case. Hence, case 4 is merely qualified as «supercritical»
injection in the following.

Because of the strong changes in dynamic viscosity near the pseudo-boiling temperature
(Fig. 2a), the Reynolds numbers at injection for cases 3 and 4 are very close: Reinj =
160 000.

2.2 Numerical Setup: Mesh and Boundary Conditions

A longitudinal cut of the mesh is displayed in Fig. 5a. The grid is finest near the in-
jector, with a constant characteristic cell size of 0.1 mm over a distance of almost ten
diameters. This zone is followed by a smoothly coarsening region. The mesh, which is
the same for both cases, contains 950 000 points and 5 500 000 tetrahedra. The boundary
conditions used in the present simulation are presented in Fig. 5b. The pressure in the
reservoir is maintained by a non-reflecting outlet with a target pressure using the NSCBC
technique [9] made consistent with the real-gas EOS [10]. The walls near the injector are
treated as adiabatic while the reservoir walls are kept at a constant temperature of 298
K. The velocity and temperature are imposed at the inlet with turbulent perturbations
prescribed by the procedure initially developed by Kraichnan [11, 12] and adapted to
compressible flows [13] with an intensity of 2.5 % of the mean flow.
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(a) Longitudinal cut of the computational domain’s
mesh on a length of 30 injector diameters

(b) Boundary conditions

Figure 5: Numerical setup

3 RESULTS

The centerline profile of density was experimentally measured by Mayer et al. [8] using
2D Raman technique. These results are compared with the present numerical simulations
in Fig. 6. For case 3, the computational results accurately predict the drop in centerline
density despite a small ( 10%) overestimation near the injector, which could be due to
a systematic error of the Raman technique in very-high-density regions [8]. For case 4
however, experimental and numerical results differ notably. This could come from a small
discrepancy between the simulation and the experiment injection temperature, which
implies a very large discrepancy between injection densities, since the inlet thermodynamic
state is very close to the pseudo-boiling point (cf. Fig. 4a). Finally, based on the centerline
density profiles, one can evaluate the dense-core length xDC , which is defined, in the
present study, as the downstream distance from the injector, where the density decreases
below 99% of its injection value. It is found to be 7.9 diameters for case 3 and reduces to
5.1 diameters for case 4.

In order to assess mixing efficiency, the initial destabilization of the dense-core and its
transition to fully developed turbulence is studied. Fig. 8a shows the axial development
of radial velocity perturbations u′r in the shear layer. The development of u′

r in the near-
injector region is much faster in case 4 than in case 3. In case 4, it reaches 20% of Uinj
at 2 diameters, while it reaches 10% of Uinj at 13 diameters in case 3. An exponential
fit of the initial growth of the velocity perturbation is made in order to obtain a spatial
amplification coefficient ki (u′r = y0 +Aexp(kix/D) ). In case 4, ki is approximately four
times as high as case 3. The growth of the velocity perturbations appears similar to the
Kelvin-Helmholtz instability and shows the stabilizing effect of the density gradient.

The effects of these velocity perturbations on the «dense fluid» is now investigated.
The non-dimensional density ρ+ is introduced:

ρ+ =
ρ− ρ∞
ρinj − ρ∞

(6)

When ρ+ = 1, the fluid has the injection density. When ρ+ = 0, it has the reservoir
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Figure 6: Comparison between experimental results and LES results of the centerline
density in terms of normalized distance from the injector. present LES ; Mayer
et al. [8]

density. An isosurface at ρ+ = 0.5 colored by velocity magnitude (the darker, the higher
velocity) is shown in Fig. 7, and is here called the «dense fluid». The wrinkling of the
dense fluid is then assessed isolating one-diameter-long slices and computing the surface
to volume ratio of these slices. The instantaneous longitudinal evolution of the dense-fluid
wrinkling is plotted in Fig. 8b . The wrinkling of the transcritical dense fluid is much
lower than the supercritical one, which reduces the exchange surface between hot and
cold fluid, i.e. heat transfer.

In order to identify the phenomena responsible for the increase of velocity perturba-
tions, the enstrophy ω2 balance equation is analysed

D(ω2)
Dt

= 2ω.(ω.∇)u −2(∇.u)ω2 −2ω.∇ρ×∇P
ρ2

+2ω.∇× (1
ρ
∇.τ)

Stretching Dilatation Baroclinic torque Dissipation
(7)

where ω = ∇ × U , U is the velocity and τ is the viscous stress tensor. The average
non-dimensional source terms of the enstrophy equation are plotted in Fig. 9 for both
cases. The radial profiles are taken at x/xDC = 0.5 in order to get information about
the dense-core destabilization. The total contribution of the source terms in Eq. 7 closely
follows the profile of the baroclinic torque in both cases, showing the great importance
of this term. Vortex stretching is approximately compensated by viscous dissipation. It
appears that only the absolute value of the source terms are changed between case 3 and
case 4 while their relative importance are approximately the same.
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(a) Case 3

(b) Case 4

Figure 7: Isosurface at ρ+ = 0.5 colored by velocity magnitude
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Figure 8: Mixing efficiencies
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Figure 9: Enstrophy source terms in the transition zone of the two jets

4 CONCLUSION

A LES of a supercritical round jet representative of the dense-oxygen injection in rocket
engines has been successfully undertaken. The dense-core length of case 3 is found to
be much longer than case 4. The centerline density profile of case 3 is in very good
agreement with the experimental results available [8] while case 4 shows discrepancies.
The amplification rate of the radial velocity perturbations along the shear layer in case 3
is four times as low as case 4, which leads to delayed destabilization of the transcritical
jet. The surface of the dense core in case 3 is shown to be much less wrinkled than case 4,
which limits heat transfer.
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