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Abstract

Large-Eddy Simulations (LES) of an evaporating two-phase flow in an ex-

perimental burner are investigated. Two different numerical approaches for

the simulation of the dispersed phase are coupled to the same gaseous solver:

a mesoscopic Eulerian method and a Lagrangian particle tracking technique.

The spray is represented by a single droplet size owing to the locally monodis-

perse formulation of the employed mesoscopic Eulerian approach. Both ap-

proaches use the same drag and evaporation models. They do not take

into account the atomization process and a simplified injection model is ap-

plied instead. The presented methodology, referred as FIM-UR (Fuel In-

jection Method by Upstream Reconstruction) defines injection profiles for

the monodisperse spray produced by a pressure-swirl atomizer. It is de-

signed so as to ensure similar spray characteristics for both approaches and

allows for a direct comparison between them. After a validation of the purely
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gaseous flow in the burner, liquid-phase dynamics and droplet dispersion are

qualitatively and quantitatively evaluated for the Eulerian and Lagrangian

simulations. Results obtained for both approaches are in very good agree-

ment and compare reasonably with experiments, indicating that simplified

injection methods are appropriate for the simulation of realistic combustor

geometries.

Keywords: Large eddy simulation, liquid injection, Euler-Euler mesoscopic

approach, Euler-Lagrange approach

1. Introduction

Large-Eddy simulation (LES) has shown its potential for single-phase

reacting flows in aeroengine combustors (Mahesh et al., 2004; Selle et al.,

2004) and is being extended to two-phase reacting flows where the prediction

of the combustion mechanisms depends on the quality of the fuel air mixing

into the combustion chamber. Two-phase flow LES are able to reproduce

the droplet dispersion (Boivin et al., 2000; Apte et al., 2003; Riber et al.,

2009) and evaporation (Boileau et al., 2008b; Patel and Menon, 2008; Apte

et al., 2009) mechanisms which influence the fuel air mixing. However, two-

phase flow LES are limited to dispersed sprays and do not take into account

primary atomization. As a result, these two-phase flow simulations rely on a

detailed characterization of the atomized spray close to injection.

The fuel spray pattern is produced by the atomization of the liquid fuel

into small droplets. In aeroengine applications, the atomization process is

enhanced by pressure-swirl atomizers, extensively studied and described in

the literature (Lefebvre, 1989; Bayvel and Orzechowski, 1993). Even for
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pressure-swirl atomizers having the simplest internal geometry (simplex ), the

spray pattern is influenced by several design parameters and local turbulence

parameters (Taylor, 1948; Jones and Whitelaw, 1982; Rizk and Lefebvre,

1983).

To describe the dispersed phase, most LES codes use an Euler/Lagrange

(EL) method in which the gas phase is solved using an Eulerian method

while the particles are tracked in a Lagrangian framework (Sankaran and

Menon, 2002; Patel and Menon, 2008; Apte et al., 2009). An alternative

approach to describe the dispersed phase is the Euler/Euler (EE) method in

which both phases are solved using an Eulerian description. In this approach

the dispersed phase is considered as a continuum built from the ensemble

averaging of particle realizations (Février et al., 2005; Kaufmann et al., 2008;

Boileau et al., 2008a; Riber et al., 2009). In the EE approach, both phases are

solved on the same mesh grid with the same discretization schemes, whereas

in the EL approach, quantities needed for the coupling between phases have

to be interpolated at the droplet position or distributed at the mesh nodes.

In the present study, the two approaches, implemented into the same LES

gas solver, are compared to describe dispersed two-phase flows in a real gas

turbine geometry.

Numerical simulations of the atomization process are a recent research

topic. They rely on the development of specific numerical tools, such as inter-

face tracking or capturing techniques (Menard et al., 2007; Desjardins et al.,

2008), which require a high level of precision and remain limited in terms of

Reynolds number and geometrical complexity. They are not yet suitable for

the simulation of the real injection in an actual combustion chamber.

3



The present study describes an alternative and simplified methodology to

build the size and velocity distributions of the droplets at injection without

solving primary atomization. The proposed methodology called FIM-UR,

for Fuel Injection Method by Upstream Reconstruction, allows to specify the

boundary conditions for fuel injection by pressure-swirl atomizer for both EE

and EL methods within the same framework.

The paper is organized as follows. First the LES equations and models

for two-phase flows are recalled, including both the Eulerian and Lagrangian

formulations for the dispersed phase. Then the FIM-UR methodology is

presented: the boundary conditions for both the EL and the EE approach

are derived from input parameters and balance equations. The third part

describes the application to an experimental configuration. Results are an-

alyzed in terms of validation against experimental data, evaluation of the

FIM-UR model and comparison of the EL and EE methods.

2. System equations

2.1. Gas phase

The unstructured LES code AVBP explicitly solves the filtered compress-

ible Navier-Stokes equations:

∂ρũi

∂t
+

∂ρũiũj

∂xj
= − ∂

∂xj
[pδij − τ ij − τ sgs

ij )] + ṡmo,i (1)

∂ρE

∂t
+

∂ρẼũj

∂xj
= − ∂

∂xj
[ui(pδij − τij) + qj + qsgsj ] + ṡen (2)

∂ρỸk

∂t
+

∂ρỸkũj

∂xj
=

∂

∂xj
[Jj,k − J

sgs

j,k ] + ṡms,k for k=1,N (3)
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· states for the Reynolds spatial filtering and ·̃ states for the Favre spatial
filtering: ρf = ρf̃ . Einstein’s summation convention is applied over repeated

indices and δij denotes the Kronecker symbol. The inter-phase exchange

terms of momentum, energy and mass respectively, ṡmo,i, ṡen and ṡms,k, will

be detailed in subsection 2.3.

τ ij stands for the laminar filtered stress tensor. The diffusive species flux

Ji,k is evaluated with the Hirschfelder and Curtis approximation (Hirschfelder

et al., 1964), a correction term being added to ensure mass conservation

(Poinsot and Veynante, 2001). The heat flux qj takes into account temper-

ature diffusion as well as enthalpy flux due to differential species diffusion

following Fourier’s law. For the sub-grid unclosed terms, the classical eddy-

viscosity assumption is made:

τ sgs
ij = ρ(ũiuj − ũiũj) ≈ 2ρνt

(
S̃ij −

1

3
S̃kkδij

)
(4)

and similarly for J
sgs

j,k and qsgsj :

J
sgs

j,k = ρ(ũjYk − ũjỸk) ≈ −ρ
(
Dt

Wk

W

∂X̃k

∂xj

− ỸkṼ c
j

)
(5)

qsgsj = ρ(ũjE − ũjẼ) ≈ −λt
∂T̃

∂xj
+

N∑

k=1

J
sgs

j,k h̃s,k (6)

The turbulent viscosity is computed with the Wall Adapting Local Eddy-

viscosity model (Nicoud and Ducros, 1999), which recovers the right scaling

of turbulent viscosity close to solid boundaries and yields reduced damping in

zones of pure shear compared to the standard Smagorinsky model (Smagorin-

sky, 1963). The turbulent diffusive coefficients Dt and λt are computed from

the turbulent viscosity and turbulent Schmidt and Prandtl numbers equal

to 0.6: Dt = νt/Sct and λt = ρνtCp/Prt.

5



Equations (1)-(3) are numerically solved with an optimized Two-step

Taylor-Galerkin scheme (TTGC) which achieves third order accuracy in time

and space for convective terms (Colin and Rudgyard, 2000). Inlet and out-

let boundary condition treatment relies on one-dimensional formulation for

non-reflecting characteristic boundary conditions for viscous flows (Poinsot

and Lele, 1992).

2.2. Dispersed liquid phase

For both approaches, it is assumed that the density of the droplets is

much larger than that of the carrier fluid, the droplets are dispersed and col-

lisions between them are negligible, the droplets are much smaller than the

LES filter width, droplet deformation effects are small, motion due to shear

is negligible and gravitational effects are not significant compared to drag.

The governing equations of motion for the dispersed liquid-phase of the Euler-

Lagrange and the Euler-Euler formalisms are presented in the two next sec-

tions.

2.2.1. Euler-Lagrange approach

Under the previous assumptions, the Lagrangian equations governing the

droplet motion read:

dxp,i

dt
= up,i and

dup,i

dt
=

fp,i
mp

(7)

where mp is the mass of the droplet, xp the position of the droplet centroid

and up the droplet velocity. fp is the drag force acting upon the droplet.

When dealing with evaporating droplets, equations for the droplet mass

6



mp and temperature Tp must also be solved:

dmp

dt
= ṁp and

dTp

dt
=

−1
mpCp,l

φc
p (8)

where ṁp is the evaporating mass rate, Cp,l the specific heat of the liquid

and φc
p the conductive heat flux on the liquid side at the droplet surface.

For time advancement, the Lagrangian solver uses a two-step Runge-

Kutta method coupled to two iterations of the gaseous solver, so that ∆tp =

2∆tg.

2.2.2. Euler-Euler approach

The Eulerian approach describes the dispersed phase with ensemble av-

erage of the droplet properties over a given set of liquid-phase realizations,

conditioned on one gas-phase realization and denoted 〈·|Hf〉l or ·̆ to lighten
equations. The continuous averaged properties called the mesoscopic quanti-

ties are for a mono-disperse evaporating spray: the droplet number density,

the liquid volume fraction, the mesoscopic velocity and the mesoscopic en-

thalpy. Locally the spray is described by a single diameter d defined by

ᾰl = n̆l πd
3/6.

The discrete drop velocity up may be separated into an Eulerian part,

the mesoscopic velocity ŭl and a Lagrangian random part, the random un-

correlated velocity u′′p (Février et al., 2005):

up = ŭl + u′′p (9)

This random motion leads to an isotropic redistribution of droplets which

is enhanced in zones of shear and compressibility effects of the mesoscopic

motion (Simonin et al., 2002). In the considered Eulerian approach, this

7



effect is taken into account by solving a transport equation for the associated

kinetic energy δθ̆l.

By analogy with the gas phase Favre filtering, a LES filter is applied to

the mesoscopic equations ᾰlf̆l = αlf̂l where αl is the spatially filtered liquid

volume fraction. It is assumed that the subgrid velocity accounts only for

the mesoscopic motion. The final set of filtered equations for the dispersed

phase is summarized below (Moreau et al., 2010).

∂nl

∂t
+

∂nlûl,j

∂xj
= 0 (10)

∂ρlαl

∂t
+

∂ρlαlûl,j

∂xj

= −Γ (11)

∂ρlαlûl,i

∂t
+

∂ρlαlûl,iûl,j

∂xj
= F d,i − ûl,iΓ−

∂
(
−τ sgs

l,ij

)

∂xj

−2
3

∂ρlαlδ̂θl
∂xi

− ∂ρlαlδ̂R
∗

l,ij

∂xj

(12)

∂ρlαlĥl

∂t
+

∂ρlαlûl,jĥl

∂xj

= −ĥlΓ + Φl (13)

∂ρlαlδ̂θl
∂t

+
∂ρlαlûl,j δ̂θl

∂xj

= P − S (14)

where the subgrid diffusion term of liquid enthalpy is neglected. The filtered

drag-force contribution is written Fd, the filtered evaporation rate is denoted

Γ. Φl is the filtered ensemble average of the conductive heat flux on the

liquid side at the droplet surface φc
p. Details on the source terms are pro-

vided in subsection 2.3. τ sgsl is the droplet subgrid stress tensor, modeled by

analogy to compressible single-phase flows, using a Smagorinsky formulation

for the trace-free part together with a Yoshizawa formulation for the trace
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part (Moreau et al., 2010):

τ sgs
l,ij = −ρlαl

(
−C2

S∆
2
∥∥∥Ŝ∗l

∥∥∥ Ŝ∗l,ij + CY∆
2
∥∥∥Ŝ∗l

∥∥∥
2

δij

)
(15)

with: Ŝ∗l,ij =

(
∂ûl,i

∂xj
+

∂ûl,j

∂xi

)
− 2

3

∂ûl,k

∂xk
δij (16)

∥∥∥Ŝ∗l
∥∥∥
2

=
1

2
Ŝ∗l,ijŜ

∗

l,ij (17)

where the constants are set to CS = 0.16 and CY = 0.051.

δ̂R∗l is the deviatoric part of the second-order random uncorrelated ve-

locity correlation tensor δ̂Rl:

αlδ̂Rl,ij =
〈
ᾰlu′′p,iu

′′

p,j|Hf

〉
l
= αl

(
δ̂R∗l,ij +

2

3
δ̂θlδij

)
(18)

It is linked to the strain rate of the mesoscopic motion through a viscosity

model (Simonin, 1996; Sakiz and Simonin, 1998; Simonin et al., 2002):

ρlαl δ̂R
∗

l,ij = 2µrum

[
1

2

(
∂ûl,j

∂xi
+

∂ûl,i

∂xj

)
+
1

3

∂ûl,k

∂xk
δij

]
(19)

with: µrum =
1

3
ρlαlτpδ̂θl (20)

In Eq. (14), the terms P and S refer to the production and sink terms respec-

tively to model transfer of energy between the correlated and uncorrelated

motions at the resolved and subgrid scales. It includes second and third-

order velocity correlations modeled with gradient laws (Sakiz and Simonin,

1998; Riber, 2007).

In the Euler-Euler approach, the TTGC scheme is also used to solve the

set of equations (10)-(14). The dispersed phase behaves as a highly compress-

ible inviscid flow, leading to locally high particle number density (Squires and

Eaton, 1991; Kaufmann et al., 2008) and requiring the use of artificial vis-

cosity of 2nd and 4th order in these zones.

9



In the EL simulations, particle-wall interactions are modeled through elas-

tic rebound. In the EE approach, the implementation of a rebound condition

is not straightforward as there is no notion of particle path. In the present

simulations, a slip condition is used instead, ensuring wall impermeability.

2.3. Interphase exchange terms

The Lagrangian and Eulerian approaches integrated into the Avbp solver

use the same models to account for the drag force and the evaporation pro-

cess.

2.3.1. Drag force

Considering spherical droplets and high particle to fluid density ratio

(ρ/ρl ≪ 1) without gravity effect the drag force can be taken as the Stokes

drag force extended by the Schiller and Naumann’s correlation (1933).

fp,i = −
mp

τp
(up,i − ũg@p,i) with: τp =

ρl d
2

18µ

1

1 + 0.15Re0.687p

(21)

where ũg@p is the gaseous velocity seen by the droplet.

In the Lagrangian approach, ũg@p is a linear interpolation from the filtered

gas field at the droplet position, without accounting for the subgrid scale

contribution. In the Eulerian approach the gaseous velocity seen by the

dispersed liquid phase is the filtered gas velocity at the same node location,

leading to the expression:

F d,i = ρlαl

〈
fp,i
mp
|Hf

〉

l

= −ρlαl

τp
(ûl,i − ũi) (22)
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2.3.2. Evaporation source terms

The evaporation model is derived for an isolated spherical droplet at the

thermodynamic equilibrium with a surrounding quiescent mixture of ideal

gas. Within the assumption of infinitely fast thermal conductivity in the

liquid, the evaporating rate ṁp and the gas conductive flux at the droplet

surface φc
g are (Sirignano, 1999; Kuo, 2005):

ṁp = −πd Sh [ρDF ] ln (1 +BM) (23)

φc
g = −πdNuλ (T∞ − Tp)

ln (1 +BT )

BT
(24)

where BM and BT stand for the Spalding numbers of mass and temperature

respectively, accounting for the gas mixture modification in the gaseous layer

surrounding the droplet, following the 1/3rd-2/3rd rule (Hubbard et al., 1975).

According to the thermodynamic equilibrium hypothesis, the Clausius-Clapeyron

equilibrium vapor pressure relationship allows to determine the fuel mass

fraction at the droplet surface for the evaluation of BM . The balance between

gas and liquid conductive and convective heat fluxes gives the conductive heat

flux on the liquid side:

φc
p = −φc

g + ṁpLv (Tp) (25)

where Lv (Tp) is the latent heat of vaporization at the droplet tempera-

ture. The Nusselt (Nu) and Sherwood (Sh) numbers are modified following

Frössling (1938) to account for the effect of non-vanishing slip velocity be-

tween droplet and carrier phase.

In the Lagrangian approach, far field values T∞ and Yk,∞ are linearly

interpolated from the gaseous filtered fields at the droplet position. In the
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Eulerian approach these values are the gaseous filtered fields at the node.

The source terms for the Eulerian approach are :

Γ = ρlαl

〈−ṁp

mp
|Hf

〉

l

= πnld Sh [ρDF ] ln (1 +BM) (26)

Φl = ρlαl

〈
φc
p

mp
|Hf

〉

l

= πnl dNu λ
(
T̃ − T̂l

) ln (1 +BT )

BT
− ΓLv(T̂l) (27)

2.3.3. Source terms in the gas phase equations

The source terms ṡmo,i, ṡen and ṡms,k in the gas phase equations (1)-(3)

write in the EE formulation:

ṡmo,i = Γûl,i − F d,i (28)

ṡen = −Φl + ĥlΓ + Γ

(
1

2
û2
l,i

)
− ûl,iF d,i (29)

ṡms,k = ΓδkF (30)

In the EL formalism, the gaseous source terms are the volume weighted

sum of source terms over the particles located in all grid elements containing

the considered node, taking the conservative weight wp@n for a particle p as

a function of its distance to the considered node (Saffman, 1973):

ṡmo,i = − 1

V

Np∑

p=1

wp@n (ṁpup,i + fp,i) (31)

ṡen = − 1

V

Np∑

p=1

wp@n

(
φc
g − ṁp hs,F (Tp) + ṁp

(
1

2
up,i

2

)
+ fp,iup,i

)
(32)

ṡms,k = − 1

V

Np∑

p=1

wp@n (ṁpδkF ) (33)

3. The FIM-UR methodology

When performing LES of a liquid fueled combustion chamber, the main

difficulty lies in the lack of information on spray characteristics at injection.
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It is however a crucial information as the spray size and velocity distributions

have an important impact on the flame in the chamber. In most cases,

the pressure drop or the spray angle at a calibrated flow rate (measured

sometimes with an other liquid than the fuel) and the liquid flow rate are

the only available parameters. The diameter distribution and the velocity

field are sometimes (rarely) measured but only far downstream (about ten

to twenty millimeters) in the combustion chamber.

The proposed methodology complements this partial information. It re-

lies on a minimal number of internal geometrical parameters for pressure-

swirl atomizer of the simplex type, on balance equations applied to the gas-

liquid mixture in the vicinity of the discharge orifice and on the knowledge

of the mean drop size of the produced spray. The resulting model atomizer

may then be used to prescribe liquid inflow characteristics.

3.1. The simplex atomizer

Pressure-swirl atomizers are very effective as they produce a thin liquid

sheet which is quickly destabilized into ligaments which break-up further

into small drops. The resulting distribution patterns are delimited within a

specific spray angle with the shape of hollow or solid cone.

The internal geometry of a simplex atomizer (Bayvel and Orzechowski,

1993) is illustrated in Fig. 1. The liquid is injected tangentially through

a single channel 1 of diameter dp in the swirl chamber 2 of diameter DS.

The injection surface Ap of the swirl chamber is defined by Ap =
πd2p
4
. The

discharge channel 3 ends up in an orifice of radius R0. The high rotation

velocity creates an air core in the orifice channel (Lefebvre, 1989), of radius

Ra at the discharge orifice. The liquid comes out in a hollow cone thin liquid
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sheet of half angle θS

Figure 1: Internal geometry parameters of a simplex atomizer. The grey shaded surfaces

represent the liquid path, the hatched surfaces represent the solid body of the atomizer.

From (Lefebvre, 1989).

The spray angle depends on the design of the swirl chamber and the dis-

charge orifice (Rizk and Lefebvre, 1985). The spray diameter distribution

depends on the thickness of the film (Rizk and Lefebvre, 1980) and the liq-

uid velocity. It also depends on the liquid properties (Rizk and Lefebvre,

1983) of the injected fuel, such as density, viscosity and surface tension. The

atomization process is also highly dependent on the characteristics of the

surrounding air stream (Dombrowski and Johns, 1963), such as pressure and

relative velocity to the liquid. Finally turbulence plays also a role, as it may

amplify the surface waves, reducing the breakup distance and influencing the

mean drop size (Fraser et al., 1963).

The half-spray angle can be exclusively estimated from geometric param-

eters and calibration values. For the mean diameter of the droplet distribu-

tion, many empirical correlations exist but they have no general character.
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As a consequence, the present monodisperse model relies on measurements

for the mean diameter.

The empirical formula of Rizk and Lefebvre (1985) correlates the half-

spray angle θS to the ratio X of the air core surface Aair and the discharge

orifice surface Aexit:

X =
Aair

Aexit
=

(
Ra

R0

)2

=
sin2 θS

1 + cos2 θS
(34)

From the inviscid theory, the discharge coefficient CD can be related to

the contraction factor of the orifice X (Lefebvre, 1989):

CD = 1.17

√
(1−X)3

(1 +X)
(35)

The adapted formula of Taylor (1948) (Lefebvre, 1989) is used to estimate

the tangential-injection surface Ap:

Ap = 20.73C2
D A0 (36)

where A0 = π R2
0 is the total discharge orifice surface.

If the spray angle is unknown, the discharge coefficient of the real injector

is determined directly from the injection pressure at a calibration flow rate

ṁc
l as:

CD =
ṁc

l

A0

√
2 ρl∆Pi

(37)

Then Ap is estimated with Eq. (36), and θS is estimated from Eqs. (34)

and (35).

3.2. FIM-UR principles

A sketch of the FIM-UR methodology is shown in Fig. 2. The spray

formed at the exit of the atomizer is supposed to be axisymmetric around the
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(Ox) axis. Cylindrical coordinates (r, θ, x) are used. The discharge orifice is

placed at x = x0, referred as the real injection plane. The half spray angle θS

is defined in a meridian plane as the angle between the main spray direction

(Ox′) and the symmetry axis (Ox). The radial position along the main spray

direction at the abscissa x is written RS (x) = R0
S + (x− x0) tan θS where

R0
S is the radial position of the center of the cylindrical liquid film at x = x0.

In the EL approach, liquid droplets of diameter d are injected over a ring

of outer radius R0 (the radius of the discharge orifice) and inner radius Ra

(the radius of the air core at x = x0), with a velocity u0
l .

In the EE formalism, the strategy is to place the fuel injection downstream

of the real injection plane to avoid meshing the very narrow surface of the

discharge orifice (less than 1 mm diameter), which would lead to too high

computational expense. As the spray opens, the radius Ri of the injection

surface at the shifted plane (x = xi) increases. In the EE approach, liquid

is injected through the disk {x = xi, r ∈ [0, Ri]}, where the liquid volume

fraction αi
l, the droplet diameter d and the liquid velocity ui

l profiles are

prescribed. Due to air entrainment between x0 and xi, gas inflow conditions

must also be determined. All quantities in the x = xi plane are derived from

their values at x = x0 through balance equations.

The FIM-UR methodology may be summarized as follows:

1. First, unknown design parameters of the atomizer are determined and

the boundary conditions on the real injection plane x = x0 are derived.

This defines the injection boundary conditions for the EL approach.

2. Second, integral conservation laws for the spray between the planes

x = x0 and x = xi are written, using the values at the real injection
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Figure 2: Definition of parameters and sketch of the FIM-UR methodology.

plane derived in the previous step.

3. Third, the air mass flow rate entrained by the spray ṁa and the mo-

mentum loss Js,l between x = x0 and x = xi must be calculated to close

the derived balance equations. Their derivation following the Cossali’s

model (Cossali, 2001) is given in Appendix A. This allows to deter-

mine all boundary conditions for gas and liquid at x = xi in the EE

approach.

These three steps are detailed below.

3.3. Modeling the injection boundary conditions

Step 1: Injection profiles in the discharge orifice plane x = x0

The liquid velocity and volume fraction profiles on the discharge orifice
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(x = x0) are given by:

u0
l,r (θ, r0) = 0 (38)

u0
l,θ (θ, r0) =

ṁl

ρl Ap

r0
R0

S

(39)

u0
l,x (θ, r0) =

ṁl

ρlπR2
0 (1−X)

(40)

α0
l (θ, r0) =





0 if r0 ∈ [0, Ra]

1 if r0 ∈ [Ra, R0]
(41)

where R0
S stands for the middle position of the liquid sheet: R0

S = R0+Ra

2
.

The spray opening is represented by the linear radial dependence of the tan-

gential velocity and the volume fraction is set to zero in the air core.

Step 2: Spray evolution from x = x0 to x = xi

From the real (x = x0) to the simulated (x = xi) injection plane, integral

balances of mass and momentum are derived. The momentum exchange be-

tween the liquid and the gas phases is restricted to the drag force, responsible

for air entrainment by the spray. Evaporation is not taken into account and

the droplet diameter d remains constant.

For the liquid phase in the shifted injection plane (x = xi), further as-

sumptions are used to simplify the determination of the droplet velocity and

volume fraction distributions:

1. The liquid spray keeps its axisymmetrical shape around the (Ox) axis.

2. The droplet-axial velocity does not depend on the radial coordinate.

3. A Gaussian profile is assumed for the liquid volume fraction.
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Expressions of the liquid volume fraction and velocity components in the

injection plane x = xi take then the form :

ui
l,r (θ, r) = ui

l,r (r) (42)

ui
l,θ (θ, r) = ui

l,θ (r) (43)

ui
l,x (θ, r) = ui

l,x|mean (44)

αi
l (θ, r) = αi

l|max · e
−(r−µ)2

σ2 (45)

This formulation introduces 4 parameters (ui
l,x|mean, αi

l|max, µ and σ)

and 2 functions (ui
l,r (r) and ui

l,θ (r)), determined by applying conservation

equations between x = x0 and x = xi.

Mass conservation

The liquid mass flow rate through the disk x = xi, r ∈ [0, Ri] is equal to the

total injected liquid mass flow rate ṁl:

ṁl =

∫ Ri

0

∫ 2π

0

ρlu
i
l,xα

i
lrdθdr (46)

Assuming a constant spray angle (Fig. 2), the Gaussian volume fraction

distribution is centered on µ = RS (xi) = R0
S + (xi − x0) tan θS ≡ Ri

S. Using

Eqs. (44) and (45), the previous equation can be integrated analytically,

yielding:

ṁl = πρlu
i
l,x|mean α

i
l|max

[
σ2

(
1− exp (

−Ri
2

σ2
)

)

+σRi
S

√
π erf

(
Ri

σ

)]
(47)

= πρlu
i
l,x|mean α

i
l|maxIα (48)

The width of the Gaussian profile of the liquid volume fraction is deter-

mined so that the spray edges correspond to a volume fraction of 2% of its

maximum value: αi
l (Ri) = 0.02αi

l|max. This gives σ
2 = − (Ri − Ri

S)
2
/ ln 0.02.
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Axial momentum conservation

The balance of momentum writes:

J i
l,x = J0

l,x + Js,l (x0, xi) (49)

where J0
l,x and J i

l,x are the axial liquid momentum flux at respectively x = x0

and x = xi and Js,l (x0, xi) is the momentum exchange due to drag. The

fluxes J0
l,x and J

i
l,x can be calculated by integration of the momentum flux over

the discharge orifice plane and the translated injection plane respectively:

J0
l,x =

∫ R0

0

2πρlα
0
l

(
u0
l,x

)2
rdr = ṁl u

0
l,x (50)

J i
l,x =

∫ Ri

0

2πρlα
i
l

(
ui
l,x

)2
rdr = ṁl u

i
l,x|mean (51)

The momentum sink Js,l (x0, xi) is calculated in Appendix A.3, by apply-

ing the integral model developed by Cossali (2001).

Combining Eqs. (40), (50) and (51), the liquid axial velocity is obtained:

ui
l,x|mean = u0

l,x +
Js,l (x0, xi)

ṁl

(52)

Angular momentum conservation

The momentum exchange between the injected liquid and the ambient fluid

(air) is supposed most prominent in the (Ox) injection direction and is ne-

glected in the perpendicular directions. As a consequence, the droplet tra-

jectory projected in a plane perpendicular to the (Ox) injection direction

follows a ballistic trajectory: a droplet initially located at a radial position

r0 ∈ [0, R0] in the plane x = x0 follows a straight line when projected per-

pendicular to the injection axis (Fig. 3).
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Figure 3: Projection of the ballistic trajectory of the droplet in the plane normal to the

injection direction x.

On the plane x = xi the droplet is located at the radial distance r ∈
[0, Ri]. As the radial velocity is null at x = x0, the radial and azimuthal

velocity components in the injection plane x = xi are given by:

ui
l,r (r) = u0

l,θ (r0) cosα = u0
l,θ (r0)

√
r2 − r20
r

(53)

ui
l,θ (r) = u0

l,θ (r0) sinα = u0
l,θ (r0)

r0
r

(54)

where the angle α is defined in Fig. 3 as the angle between the projected

droplet position vectors. Eq. (54) can be seen as the conservation of the

angular momentum of the droplets around the x-rotational axis.

If the distance between the real and the simulated injection plane is small

enough, the constant spray angle ensures that r0 and r are related by:

r

r0
≃ Ri

S

R0
S

(55)

Combining Eqs. (39) and (53)-(55), the liquid radial and azimuthal ve-

locities on the injection plane are finally related to the discharge orifice pa-

21



rameters:

ui
l,r (r) =

ṁl

ρl Ap

√
1−

(
R0

S

Ri
S

)2
r

Ri
S

(56)

ui
l,θ (r) =

ṁl

ρl Ap

R0
S

Ri
S

r

Ri
S

(57)

Step 3: Air entrainment by the spray from x = x0 to x = xi

As air is entrained by the spray, gas boundary conditions are also required

in the plane x = xi. Experimental results by Prosperi et al. (2007) demon-

strated that the air flow rate entrained by the spray scales like the distance to

the atomizer-discharge orifice to the power 3/2 and like the gas density to the

power 5/6 in the near field of a hollow-cone spray. These results confirm the

validity of the integral model obtained by Cossali (2001) in the near-field of

the atomizer which states that the air entrained by the spray is proportional

to ρ5/6 (x− x0)
3/2. It is assumed that the axial velocity for the gas phase is

independent of the radial coordinate: ug,x (x, r) = ug,x (x).

The mass-flow rate of the air entrained by the spray at the axial position xi

can therefore be expressed as ṁa = πRi
2ρui

g,x, where ui
g,x = ug,x (xi), and

according to Prosperi et al. (2007):

ṁa = Ka ρ
5/6 (xi − x0)

3/2 (58)

Combining the two above expressions for ṁa, the gas axial velocity is

finally found to be:

ui
g,x =

Ka (xi − x0)
3/2

πRi
2(ρ)1/6

(59)

At this stage, the missing parameters are the outer radius of the spray

Ri, the coefficient for air entrained by the spray Ka, which is a constant
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for a given atomizer (Prosperi et al., 2007), and the momentum exchange

Js,l (x0, xi). Appendix A describes a way to determine these parameters, by

applying the integral model developed by Cossali (2001).

Introducing the parameter Au, Eq. A.21, which takes into account con-

traction effects on the discharge orifice as well as air entrainement effects

along the axial distance, the liquid velocity profiles on the simulated injec-

tion plane x = xi are finally written:

ui
l,r (θ, r) =

ṁl

ρlAp

√
1−

(
R0

S

Ri
S

)2
r

Ri
S

(60)

ui
l,θ (θ, r) =

ṁl

ρlAp

R0
S

Ri
S

r

Ri
S

(61)

ui
l,x (θ, r) =

ṁl

πR2
0

Au (62)

αi
l (θ, r) =

πR2
0

ρl IαAu

e
−(r−µ)2

σ2 (63)

Such a methodology has been developed here in the context of mono-disperse

spray and be easily extended for poly-disperse sprays (Vié et al., 2010).

4. Application to the MERCATO configuration

4.1. Experimental setup

Two-phase flow LES simulations including the injection boundary profiles

defined within the FIM-UR methodology are performed on the MERCATO

test-rig. This work was first initiated by Lamarque (2007). The experimental

rig MERCATO (Fig. 4) is a swirled combustor fed with air and liquid kerosene

(Jet-A) operated at ONERA-Fauga by R. Lecourt and coworkers (Garćıa-

Rosa, 2008). For easy optical access, the plenum and combustion chamber
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Figure 4: The MERCATO configuration (ONERA Fauga)

have square sections of respectively 100 mm and 130 mm side length. They

are respectively 200 mm and 285 mm long. The air goes from the plenum to

the combustion chamber through the twelve tilted channels of a single staged

swirler and discharges into the diffuser, a long cylindrical channel which ends

up into the combustion chamber. The liquid kerosene is injected through a

pressure-swirled atomizer located on the tip of the nozzle of the air injection

system. Characteristic parameters of the Delavan atomizer (Tab. 1) have

been determined by calibration.

Discharge orifice R0 = 0.25 mm

Half-spray angle θs = 40◦

Injection pressure at calibration ∆P c
i = 6.89× 105 Pa

Liquid flow-rate for calibration ṁc
l = 3.3 g/s

Table 1: Characteristic parameters of the atomizer.

The flow regimes considered in this paper are presented in Table 2. Case I

is a purely gaseous flow while Case II is a two-phase evaporating flow. The
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air is heated up to 463 K to enhance evaporation and reduce the formation

of liquid fuel films on visualization windows during experiments.

Case
Pressure Temp. (K) Flow rate (g/s)

(atm) Liquid Air Air Fuel

I: gas flow 1 − 463 15 −
II: gas flow + droplets 1 300 463 15 1

Table 2: Summary of operating points for the two simulated cases.

For Case I, LDA (laser doppler anemometry) measurements were per-

formed on the gas seeded with fine oil droplets (< 2µm). The mean and

root-mean-square (RMS) of the three gas velocity components were obtained

in five transverse planes (z = 6 mm, z = 26 mm, z = 56 mm, z =86 mm,

z = 116 mm), z being the axial distance from the inlet plane of the combus-

tion chamber. For Case II, LDA-PDA (phase doppler anemometry) measure-

ments were performed on the kerosene dispersed phase to obtain the mean

and RMS of the three velocity components and the diameter of the droplets

in three transverse planes (z = 6 mm, z = 26 mm, z = 56 mm). Case

I measurements allow to validate the gas phase solver, while Case II data

allows to evaluate the dynamics of the dispersed phase and the dispersion of

droplet sizes into the combustion chamber in both Eulerian and Lagrangian

approaches. Data over the first measurement plane at z = 6 mm will be used

to evaluate the validity of the FIM-UR methodology for a complex flow.

The MERCATO geometry is fully meshed with tetrahedral cells in order

to efficiently refine or coarsen cells in areas of interest (swirler, combustion

chamber) or non-interest (plenum, atmosphere outlet) respectively. A grid
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convergence study has led to the grid shown in Fig. 5, which contains 650000

nodes mesh (3.5 million tetrahedral cells).

(a) Global view of the configuration,

from inlet to atmospheric outlet.

(b) Detailed view in the measurement area.

Figure 5: Mid-section plane of the unstructured mesh for the present simulations.

4.2. Liquid injection

Jet-A kerosene is a fuel used for civil aviation. It is a complex mix-

ture of hundreds of hydrocarbons and additives and is usually represented

by surrogate fuels, composed of few hydrocarbons (Dagaut and Cathonnet,

2006). In the present simulations Jet-A kerosene is modeled by a single meta

species, called KERO LUCHE, built as an average of the gaseous thermody-

namic properties of the 3 components surrogate of Luche (2003) (74% of

n-decane, 15% propyl-benzene, 11% propyl-cyclo-hexane per unit volume).

The liquid properties are computed from the correlation functions proposed

by Harstad and Bellan (2004) for Jet-A, using the mean molar weight of the

surrogate, WF = 137.2 g/mol, as an input parameter. Table 3 summarizes

the computed values at 300 K and 1 atm..
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Liquid density 781 kg/m3

Boiling Temperature @ 1atm 445.10 K

Heat of Vaporization 289.01 kJ/kg

Liquid heat capacity 2.003 kJ/kg/K

Table 3: Summary of liquid properties for the meta-species KERO LUCHE.

The FIM-UR methodology is applied to define the inlet conditions for

the dispersed phase at the exit of the atomizer. Lagrangian droplets are

randomly injected on the nozzle ring r0 ∈ [Ra, R0], and fulfill the velocity-

component expressions given in Eqs. (38) - (40). The required parameters

for the FIM-UR model at x = x0 have been determined from the calibration

parameters (Tab. 1):

Contraction factor X = 0.260

Air core radius Ra = 6.5× 10−5 mm

Tangential injection surface Ap = 3.5× 10−7 m2

Table 4: Parameters for the FIM-UR profiles at x = x0.

In the EE formulation the liquid gas mixture is injected on the enlarged

nozzle shown in Fig. 6, leading to a translation distance of 2.32 mm and

an incircle of radius Ri = 4 mm. Table 5 sums up the required parameters

for the FIM-UR model evaluated from experimental data given in Tab. 1.

The spray is diluted by the entrained air, leading to a liquid volume fraction

maximum of αi
l|max = 6.51×10−3 and an axial velocity of ui

l,x|mean = 8.82 m/s

at injection.

In both the EL and EE simulations, the droplet diameter of the injected
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(a) Real nozzle geometry for the

EL approach.

(b) Modified nozzle geometry for

the EE approach.

Figure 6: Translation of the injection boundary condition.

Spray main radial position Ri
S = 2.13 mm

Liquid volume fraction shape parameter σ = 8.9× 10−7 m2

Air entrainment constant Ka = 5.62× 10−4

Integration constant Iα = 7.10× 10−6

Entrainement parameter Au = 5.44× 10−3

Table 5: Parameters for the FIM-UR profiles at x = xi.

spray is equal to d = 55 µm in accordance with the mean diameter of the par-

ticle distributions measured by PDA at the first measurement plane. EL in-

jection is monodisperse to lead to comparable results with the EE simulation

for which equations and injection model are developed for a mono-disperse

spray.
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4.3. Characteristic time scales

The behavior of particles in a turbulent flow can be classified into different

regimes (Elghobashi, 1994; Balachandar, 2009) depending on their inertial

response to the local turbulence characterized by the carrier flow time scale

τL and the Kolmogorov time scale τK and length scale ηK . For the considered

operating point, the particle time scale1 τp is 5 ms for a droplet of 55 µm

and 0.6 ms for a droplet of 10 µm. Based on the radius of the combustion

chamber inlet L=15 mm and a turbulent speed u′=4 m/s (see § 5.1) the
following turbulent characteristics can be estimated: τL=4 ms, τK=0.09 ms,

ηK=55 µm and an acceleration aK=ηK/τ
2
K=7000 m/s2. As τp ≃ τL the

droplets dynamics will be highly influenced by the large scale turbulence

of the carrier phase and the back coupling of the droplets will significantly

disturb the gas flow. For the whole range of particle diameter τp ≫ τK

ensuring that the subgrid scale turbulence will not have much effects on

the droplet dynamics. Moreover the Kolmogorov acceleration is very large

compared to the gravity acceleration, so gravity force can be safely ignored.

5. Results

The purely gaseous flow field is validated in a first step and is followed

by the two-phase flow simulation results.

1without accounting for the Schiller and Naumann (1933) correction, as the slip velocity

is unknown at this point.
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(a) Mean axial velocity field in the mid-section plane. Re-

circulation zones are highlighted by white contours of null

axial velocity.

(b) Visualization of the

Precessing Vortex Core by

an iso-surface of Q-criterion

(Q ≈ 2× 108 1/s2).

Figure 7: Topology of the gas flow in the Mercato test-rig.

5.1. Gas flow without droplets (Case I)

The gaseous flow field of the MERCATO configuration is typical of swirl-

stabilized combustors. Due to the sudden expansion of the swirled flow at the

combustion chamber inlet, a region of reverse axial flow forms on the axis,

called the central toroidal recirculation zone (CTRZ). A precessing vortex

core (PVC) (Lucca-Negro and O’Doherty, 2001), spinning at the boundary

of the CTRZ at a frequency of 830 Hz is observed in the simulation and

detected around the same frequency (778 Hz) in the experimental pressure

record. An instantaneous view of the PVC is presented in Fig. 7(b).

In the corners of the combustion chamber, additional zones of reverse axial

flow form due to entrainment of air through the gaseous jet, amd are called

corner recirculation zones (CRZ). As the jet is strongly confined between

these two recirculation zones, a region of high shear is observed in between.

The global topology of the gas flow can be deduced from the axial mean
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Figure 8: Gaseous axial velocity (Case I). Left: mean, right: RMS. 2 LDA, − AVBP

velocity in the mid-section plane of the combustion chamber in Fig. 7(a). Two

different regions can be distinguished. First at the inlet of the combustion

chamber, the central toroidal recirculation zone is very narrow, confined by

the high jet velocities. After the impingement of the swirled jet on the

chamber walls, the CTRZ expands suddenly on almost the whole width of

the combustion chamber.

Figures 8-10 show mean and RMS gas velocity profiles in the axial, radial

and tangential directions respectively for the five axial positions measured

from the inlet plane of the combustion chamber. Numerical results (solid

lines) are compared with the experimental LDA data (symbols). The av-

eraging time for the purely gaseous simulation is in the order of 780 ms,

corresponding to approximately 30 flow-through times. This long simulation

time is required to reach a statistic converged state in the recirculation zones

(that is symmetric and smooth profile on both mean and RMS components),

especially in the last axial position.

Results are in very good agreement with experiments. The LES gas solver

is able to accurately reproduce the recirculating flow as well as the high shear
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Figure 9: Gaseous radial velocity (Case I). Left: mean, right: RMS. 2 LDA, − AVBP
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Figure 10: Gaseous tangential velocity (Case I). Left: mean, right: RMS. 2 LDA, −
AVBP
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flow. The radial positions of the maxima for the three components are in

fair-good agreement with the experiments ensuring that the opening of the

gaseous jet is globally well reproduced, except at the fourth measurement

station in Fig. 8 (left) where the opening appears overestimated. RMS ve-

locity profiles are also in excellent agreement with experiment, although un-

derestimated in the most downstream stations due to grid coarsening. It

can be noticed in Fig. 7(a) that the measurement plane at z = 86 mm is

exactly located at the sudden expansion of the CTRZ, which may explain

the discrepancies between numerical and experimental profiles of mean and

RMS velocity components at this location. Note also the asymmetry of the

experimental mean radial profiles (Fig. 9, left), not observed in the numer-

ical simulation. This asymmetry is probably caused by a slight mismatch

between the swirler aerodynamic axis and the geometrical axis of the com-

bustion chamber in the experimental setup.

Finally it has been checked that the geometrical modification (Fig. 6)

required by the EE FIM-UR boundary condition leads to identical results,

even at the first axial location.

5.2. Gas flow with evaporating droplets (Case II)

For case II, droplets are injected starting from a well-established gas-

phase solution, following the FIM-UR methodology presented in Section 3.3,

with the parameters provided in Section 4.2. The combustion chamber is

continuously filled up with droplets which are trapped in the recirculation

zones before evaporating entirely.
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(a) AVBP-EE: droplet density (grayscale) (b) AVBP-EL: droplet positions (dots), gas tem-

perature (grayscale).

Figure 11: Instantaneous droplet distribution in the Mercato chamber (Case II). Compar-

ison between EE (left) and EL (right)

5.2.1. Liquid phase distribution

Figure 11 shows an instantaneous view of the droplet distribution in the

combustion chamber for the EE (Fig. 11(a)) and EL (Fig. 11(b)) simulations.

Both capture droplet preferential concentration: the central toroidal recir-

culation zone has a low droplet density, while dense pockets can be seen in

the shear layer of the swirled air jet and droplets are trapped in the corner

recirculation zones of the chamber.

These phenomena are further illustrated in Fig. 12, which displays se-

lected particle trajectories extracted from the EL simulation. All trajectories

start at the same time and end after complete evaporation of the droplet. All

particles follow the strong swirling motion of the air jet, and most of them

are trapped in the shear layer of the gaseous jet and rebound against the

sidewalls of the combustion chamber at approximately 105 mm. Having lost

most of their mass at that time, they closely follow the gaseous flowfield and

either remain in the low velocity zone in the vicinity of the sidewalls or are

captured in the central toroidal recirculation zone where they rapidly and

completely evaporate. Some particles immediately penetrate into the axial
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Figure 12: Visualisation of typical particle trajectories in the Lagrangian simulation. Left:

side view; right: front view.

recirculation zone where they are strongly deflected. In turn, these particles

reverse their axial velocity and are finally captured in the corner recirculation

zones of the chamber.

For comparison purposes, particle trajectories may be reconstructed from

the EE simulation. Assuming isotropy of the random uncorrelated velocity,

and neglecting the unresolved part of the mesoscopic velocity, the particle

velocity is locally evaluated by :

u(k)
p = ûl +

√
2 δ̂θl nr(k) (64)

where nr(k) is a random unity vector. The trajectories along 12 ms of phys-

ical time for 8 particles shot simultaneously on the injection boundary patch

are presented in Fig. 13. Same particle behaviors as in Fig. 12 are found ex-

cept near the walls where the slip boundary condition of the EE formulation

keeps particles stuck on the walls.

Close to the nozzle, particles are strongly influenced by the PVC, lead-

ing to an unsteady tridimensional structure of the dispersed phase shown

in Fig. 14. This was also observed during the experimental campaigns: the
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Figure 13: Visualisation of reconstructed particle trajectories in the Eulerian simulation.

Left: side view; right: front view.

spray was found unstable and periodically impinged on the walls of the dif-

fuser.

5.2.2. Dynamics of droplet phase

The droplet velocity profiles at three axial planes are compared in Figs. 15 -

17. The averaging time in the two simulations is of the order of 200 ms,

corresponding to approximately 5 flow-through times. Note that the air

flow rate was increased when performing the droplet LDA measurements at

z = 56 mm to delay spray impingement on measurement windows. Thus,

the comparisons between the LES and the experimental results are affected

by larger uncertainties at this location .

Numerical results (lines) presented in Figs. 15 -17 are overall in good

agreement with the experimental LDA data (symbols) for both mean and

RMS values, and differencies between the Lagrangian (solid line) and Eule-

rian (dash line) profiles are minor. The EL simulation underestimates the

mean axial velocity close to the axis at the first measurement location, which

is probably related to the injection procedure as discussed later, and surpris-

36



(a) Iso-surface (white) of liquid volume frac-

tion αl = 5× 10−5 and iso-surface (black) of

Q-criterion Q = 1.2× 108 s2.

(b) Black points mark the droplet position.

Figure 14: Isometric view of the spray close to the injector. Left: EE simulation, right:

EL simulation.

ingly overestimates the radial mean velocity maxima at z = 26 mm. This

EL misprediction of the radial opening of the liquid jet, while EE captures it

correctly, is not yet understood. Concerning the mean tangential component

(Fig. 16, left) the two simulations only fail in the z = 56 mm where the

maximum value and slope of tangential velocity are not well predicted.

RMS predictions are overall good in shape and level, and comparable for

both approaches. They are less accurate in the last measurement plane, with

a better performance of the EL simulation. This is due to the higher diffusiv-

ity of the EE approach, resulting in flatter profiles. On the first measurement

plane the RMS radial velocity given by the EL simulation highly overpredicts

the side peaks, which is again due to the injection boundary condition. Note

the oscillations around the center-line of the Lagrangian RMS profiles, due

to the poor particle density in this region.
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Figure 15: Droplet axial velocity (Case II). Left: mean, right: RMS. 2 PDA, − EL, - -

EE
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Figure 16: Droplet radial velocity (Case II). Left: mean, right: RMS. 2 PDA, − EL, - -

EE
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Figure 17: Droplet tangential velocity (Case II). Left: mean, right: RMS. 2 PDA, − EL,

- - EE

Focusing now on the first profiles at z = 6 mm, the results can be related

to the FIM-UR injection method. The excellent agreement of the mean and

RMS velocity components at a distance of 15 mm from the discharge orifice,

demonstrate the validity of the FIM-UR injection methodology. The largest

differences between the EL and EE approaches appear on the RMS profile

of the radial component. The behavior of the Lagrangian particles in the

vicinity of the nozzle is certainly altered by the turbulent gas structures,

which are not taken into account in the Eulerian FIM-UR model, where

a ballistic assumption is used to derive the radial velocity profile. Other

differences between EL and EE profiles appear on the center line of the

axial velocity component profiles Fig. 15. The entrained air calculated in

the Eulerian FIM-UR model only takes into account the air coming from the

exterior of the spray. In the EL simulation however, the air entrained by the

spray also includes air from the central recirculation zone which reduces the
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droplet velocity through drag force. This effect is certainly inaccurate in the

vicinity of the injector, where more inertial ligaments and not yet droplets

are found.

To sum up, EL and EE simulations accurately capture the spray opening

and rotation, as well as particle velocity fluctuations, with no clear advantage

for either of both approaches. The observed overall good agreement with

experiments for both approaches, especially in the first measurement plane,

i.e. close to the injector, indicates that the FIM-UR injection methodology

is reasonably accurate for swirling separated flows with pronounced drag

effects.

5.2.3. Evaporation and vapor fuel distribution

The use of a single droplet diameter to represent the polydisperse spray

shows its limitations in the plots of droplet diameter, Fig. 18. In the exper-

iments a sorting effect is observed, where the largest, most inertial droplets

concentrate in the sides of the chamber while the smallest droplets, follow-

ing the gas flow, are entrained back into the central recirculation zone. If

the initial mean droplet diameter is correct (first measurement plane), there

seems to be some delay in the sorting effect as small particles appear only

after evaporation and are not injected. This tendency is more pronounced

in the Eulerian solver, where all particles are stuck on the sidewalls and can

not re-enter the central zone (Fig. 13).

The fluctuations of droplet diameter are due to two contributions: the lo-

cal mean diameter resolved fluctuations, captured in the simulations, and the

statistical deviations from the mean diameter due to the local polydispersion

of the spray, not accounted for in the simulations. The latter appears to be
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Figure 18: Droplet diameter (Case II). Left: mean, right: RMS. 2 PDA, − EL, - - EE

the dominant source of fluctuations in the present configuration, as shown

in Fig. 18, right. Note that EL diameter fluctuations are always higher than

the EE values, resulting from both the individual history which is naturally

taken into account in the Lagrangian formulation and the sampling rate in

this area where the particle density is very low.

The resulting fuel vapor mass fraction fields are shown in Fig. 19 for both

approaches and appear very similar. The capture of droplets in the corner

recirculation zones leads to high fuel vapor mass fraction there and subse-

quent inhomogeneities through the turbulent mixing with air. Evaporation

rate isocontours (4 levels of respectively 3, 6, 9 and 12 kg/m3/s) appear

smoother in the EE simulation, due the continuous field approach. This may

have an important impact on the flame structure as the resulting evaporated

fuel field is slightly more inhomogeneous in the EL than in the EE approach,

although the fast and intense turbulent diffusion may reduce this effect.
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Figure 19: Instantaneous fields of fuel mass fraction in the Mercato chamber (Case II)

with isocontours of evaporation rate (4 levels of respectively 3, 6, 9 and 12 kg/m3/s).

Comparison between EE (left) and EL(right) at similar instants

6. Conclusions

A methodoloy for fuel injection in combustion chambers, called FIM-UR,

was introduced. The methodology is based on geometric and calibration

data of pressure-swirl atomizers and models boundary conditions to repre-

sent a monodisperse hollow-cone spray for both Lagrangian and Eulerian

approaches. The precision of the two different approaches for the modeling

of the dispersed phase (Eulerian / Lagrangian) has been investigated in the

case of a swirled combustor fed with air and liquid kerosene (Jet-A) oper-

ated at ONERA-Fauga. The two approaches were coupled to the same LES

gaseous solver AVBP and used identical atomizer parameters which allowed

a fair comparison with experimental data.

In a first step, the purely gaseous flow was validated and the observed

agreement with the experiments was very good. The compressible LES cap-

tured unsteady structures such as the Precessing Vortex Core near the noz-

zle. A liquid spray was then injected using the FIM-UR boundary conditions.

The droplet distribution showed strong inhomogeneities and the PVC was

shown to generate unsteady flow-structures on the dispersed phase. Quan-

titatively, both approaches yielded very similar spray velocity fields, also in
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good agreement with the experimental measurements, indicating that the

FIM-UR methodology is suitable for swirling flow configurations with pro-

nounced drag effects. Both approaches were able to capture the right open-

ing and rotation of the droplet spray, with no clear advantage for either of

both approaches. In terms of fluctuations, both solvers provided reasonable

agreement with experiment, although the Eulerian solver suffered from more

numerical diffusion.

Due to the monodisperse description of the spray, the mean droplet diam-

eter was not correctly predicted by both approaches, with a more pronounced

deviation for the Eulerian solver. The fluctuations of spray mean diameter

were underpredicted in the simulations because in the experiments they are

mainly due the initial polydispersion of the spray. Although this had limited

impact on the spray dynamics, it is crucial for fuel vapor distribution. Work

to include polydispersion in both EL and EE formulations is undergoing.

It should also be highlighted that good computational efficiency was ob-

tained for both approaches up to 1024 processors, demonstrating that the

two-phase flow LES solver AVBP is well suitable for massively parallel com-

putations.
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A. Model for air entrainment by a hollow-cone spray

The FIM-UR methodology requires the evaluation of air entrainment,

and more specifically the values of Ri, ṁa and Js,l (x0, xi). Cossali (2001)

proposed a model for the air entrainement coefficient Λ for full cone sprays,

measuring the mass flow rate of the air entrained per unit distance from the

discharge orifice. This model is first recalled below, then extended to hollow

cone sprays.
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A.1. Integral model for gas entrainment by full-cone sprays

Limiting solutions of the gas entrainment equation in the near and far-

field of the injector nozzle have been derived from conservative balances of the

air/liquid mixture. They provide the entrained mass flow rate by the spray

as a function of the mass flow rate of the injected liquid, the gas properties,

the mean drop size and the axial distance from the discharge orifice. The

main hypotheses used by Cossali (2001) are listed below:

A1 The liquid spray is injected into a quiescent atmosphere at uniform

pressure: in gas-turbine combustion chambers, the atomizer is usually

located on the axis of the gas recirculation zone, ensuring that the gas

is almost quiescent at this location.

A2 The model is derived for a pressurized atomizer producing a full-cone

spray pattern.

A3 The liquid and gas phases are in steady state.

A4 The liquid is non-evaporating, and the momentum exchange between

phases is reduced to the total drag force on all spray droplets.

A5 The drag force applied in the model is the aerodynamic drag on spher-

ical particle.

A6 The profiles of liquid and gas velocity, as wall as droplet number den-

sity are self-similar.
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A.2. Definition of self-similarity profiles for the integral model for gas en-

trainment into hollow-cone sprays

To meet assumption A6 for hollow-cone sprays, self-similarity profiles

must be defined. The non-dimensional coordinate (Pope, 2000) ξ is now:

ξ =
r

RS (x)
=

r

R0
S + (x− x0) tan θS

(A.1)

where θS is the half spray angle. Assuming self-similarity of gas mean axial

velocity ug,x, liquid mean axial velocity ul,x and volume fraction profiles αl,

they may be written in the form (Cossali, 2001):

ug,x (r, x) = W (x) f (ξ) (A.2)

ul,x (r, x) = U (x) f (ξ) (A.3)

αl (r, x) = N (x) ϕ (ξ) (A.4)

introducing two similarity functions f and ϕ and where the functions W , U

and N describe the axial variation of the amplitudes.

For the velocity, the similarity profile f corresponds to a turbulent round

jet in a quiescent atmosphere:

f (ξ) =
1

(1 + a ξ2)2
(A.5)

where a is defined so that the jet’s half width is located on the (Ox′) axis,

i.e. f (1) = 1/2. Then a =
√
2− 1.

For the liquid volume fraction, the similarity profile ϕ is defined so as to

be minimum at the centerline:

ϕ (ξ) =
b ξ2

(1 + c ξ2)4
(A.6)
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The parameters b and c are defined to ensure first - that the maximal value

of the ϕ function is 1, and secondly - that this maximum is located on the

(Ox′) axis, i.e. ϕ (1) = 1. This leads to c = 1/3 and b = 256/81 (Fig. A.20).
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Figure A.20: Similarity functions f and ϕ as functions of ξ.

The radius of the injection external boundary Ri in the plane x = xi must

be equal or larger than the position ξ1/2 of the half-width of the ϕ function:

Ri ≥ ξ1/2R
i
S (A.7)

where: ϕ
(

ξ1/2
)

=
1

2
i.e. ξ1/2 = 1.87397 (A.8)

A.3. Evaluation of the air entrainment coefficient

The entrained air ṁa is related to the liquid flow rate and to the dis-

tance from the discharge orifice through the air entrainment coefficient Λ (x):

ṁa (x) = Λ (x) ṁl (x− x0) /2R0. The entrainment coefficient is given in the

near field of the injector nozzle by (Cossali, 2001):

Λ (x) = H0

(

2R0 µ

ṁl

)1/6(
ρ

ρl

)5/6(
2R0

d

)2/3(
x− x0

2R0

)1/2

(A.9)
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where: H0 =
√
3

(

4

π

)1/3
(

2πQ2RCM
2/3

M B1/3 C2/3

)1/2

(A.10)

and: ṁa (x0) = 0 (A.11)

The quantities Q, M , B, C, and R have to be calculated by integration of

the functions f and ϕ. Their expression derived in Cossali (2001) are recalled

in Eqs. A.12 to A.16. To obtain the integrals B, C and R, the formula

(3.197.1) p. 314 of Gradshteyn and Ryzhik (1980) has been used. 2F1 stands

for the first Gauss hypergeometric function, tabulated in Tab. A.6.

gas flow-rate Q =

∫

∞

0

f(ξ)ξdξ =
1

2
(√

2− 1
) (A.12)

gas momentum flux M =

∫

∞

0

f 2(ξ)ξdξ =
1

6
(√

2− 1
) (A.13)

liquid flow-rate B =

∫

∞

0

f(ξ)ϕ(ξ)ξdξ

=
32

45
2F1

(

2, 2; 6; 4− 3
√
2
)

(A.14)

liquid momentum flux C =

∫

∞

0

f 2(ξ)ϕ(ξ)ξdξ

=
64

189
2F1

(

4, 2; 8; 4− 3
√
2
)

(A.15)

drag force1 R =

∫

∞

0

f(ξ)|f(ξ)|2/3ϕ(ξ)ξdξ

=
8

19
2F1

(

10

3
, 2;

22

3
; 4− 3

√
2

)

(A.16)

The coefficient CM is calculated from the discharge-orifice values u0
l,x and

1The exponent value of 2/3 comes from the correction part of Lee and Reitz (1999) for

the Stokes drag. The 2/3 coefficient is preferred to the close value 0.687 of the Schiller

and Naumann (1933)’s correction, as it leads to an analytical antiderivative function.
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2F1
(

2, 2; 6; 4− 3
√
2
)

0.85998

2F1
(

4, 2; 8; 4− 3
√
2
)

0.79844

2F1
(

10
3
, 2; 22

3
; 4− 3

√
2
)

0.81465

Table A.6: Tabulated values for 2F1.

α0
l defined in Eqs. (40) and (41):

CM =
R2

0

∫ R0

0

[

α0
l (r0) u

0
l,x(r0)

]2
r0 dr0

2
(

∫ R0

0
α0
l (r0) u

0
l,x(r0) r0 dr0

)2 =
1

1−X
(A.17)

The expression of Eq. (A.9) can now be used to obtain the Ka coefficient

required for the injection model in Eq. (59):

Ka = H0

(

2R0 µ

ṁl

)1/6(
2R0

d

)2/3
ṁl

(2R0)
3/2 ρl5/6

(A.18)

Moreover, the momentum exchange term Js,l (x0, xi) used in Eq. 52 is

also evaluated from the air entrainment coefficient as (Cossali, 2001):

Js,l (x0, xi) = −Λ2 (xi)
ṁ2

l M

8πR0
2 ρQ2

(A.19)

These two last expressions allow to close the system for the determination

of the boundary profiles in the (EE) approach. Equation 52 becomes:

ui
l,x|mean =

ṁl

πR2
0

Au (A.20)

with the constant Au given by:

Au =
CM

ρl
− M Λ2 (xi)

8 ρQ2
(A.21)
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