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This paper describes extensions and tests of characteristic methods for outlet bound-

ary conditions in compressible solvers. Three methods based on the specification of

ingoing waves using one- and multi-dimensional approximations are extended to un-

structured grids. They are first compared for weak to strong vortices propagating on

low to high speed mean flows through outlet sections. A major issue is to determine

the Mach number to be used in the specification of the transverse terms which must be

taken into account in the ingoing wave amplitude specifications. For the vortex com-

putations, results show that the averaged Mach number leads to better results than its

local value. The boundary conditions are then tested in a more complex case: the flow

around a turbine blade. A reference solution using a long distance between the blade

trailing edge and the outlet plane is first computed: for this solution, outlet boundary

conditions have almost no effect on the flow around the blade. The distance between
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the trailing edge and the outlet plane is then shortened and the various characteristic

treatments are compared where intense vortices cross the outlet plane. Results confirm

the conclusions obtained on the simple vortex test case.

Nomenclature

C = chord length

c = speed of sound

K = relax coefficient

Loutlet = distance from the outlet section to the blade trailling edge

−→L = amplitude vector of the characteristic waves

M∞ = reference Mach number

M(−→x , t) = local Mach number

M(t) = space-averaged Mach number over the outlet section

pt = target pressure

−→R = residual

−→RC
= corrected residual

−→RC

in = incoming corrected residual

−→RP
= predicted residual

−→RP

in = incoming predicted residual

−→RP

in,N = normal contribution of the incoming predicted residual

−→RP

in,T = transverse contribution of the incoming predicted residual

−→RP

out = outgoing predicted residual

−→T = transverse terms vector

α = vortex intensity

β = transverse damping coefficient

Γ = vortex strength
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I. Introduction

Boundary conditions are a usual weak point of compressible solvers especially for Large Eddy

Simulations (LES) or Direct Numerical Simulations (DNS) in the subsonic regime. For these un-

steady solvers, the capacity to let vortices and acoustic waves leave the domain without generating

reflected waves is mandatory but difficult to ensure in multiple applications. To illustrate our

objectives, we will consider here two fields of application:

• In CAA (Computational Aero Acoustics), the noise induced by vortices propagating through

outlet boundaries can pollute the signal to be measured (the noise created by a jet for exam-

ple) [1–3]: to avoid this, sophisticated methods to damp vortices before they touch boundaries

and to minimize reflection on boundaries must be combined.

• In LES of turbulent flows in confined geometries (combustion chambers for example), acoustic

waves created at boundaries by vortices leaving the domain can couple with the flow within

the chamber and lead to self-sustained instabilities which are numerical artefacts entirely

caused by boundary conditions [4, 5]. Such numerical couplings yield flow predictions which

are absolutely stable in the real world into absolutely unstable flow in the simulation world,

something which is obviously to avoid.

In both cases, minimizing the reflection level of the boundary is often the most important part of

the method. NonReflecting Boundary Conditions (NRBC) for compressible solvers are an old and

unsolved research topic [6–8]. All authors agree that characteristic methods based on wave identifi-

cation must be used. Defining waves for the Navier-Stokes equations is an extremely difficult work

in most cases and most authors work only with the Euler equations or assume that the waves found

in the Navier-Stokes equations are similar to the inviscid case: two acoustic waves, one entropy

wave and two vorticity waves for a nonreacting three-dimensional flow [9]. Viscous terms do not

contribute to the wave analysis: they are handled separately. Even when working with the waves

corresponding to the inviscid case, the problem remains difficult: while outgoing waves must be

computed using interior mesh points, ingoing waves must be specified using boundary conditions.

This is where methods differ. It is widely recognized today that at outlets, multidimensional for-
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mulations including transverse terms [10–14] provide much better results than the one-dimensional

formulations (LODI) proposed by Poinsot et al. for example [9, 15, 16] (this is not the case at inlets

where simple LODI formulations give excellent results [17]).

How to build these multidimensional methods and integrate transverse terms into the ingoing wave

formulation still is an open topic : low-Mach number expansions [10, 11] show that only a part β

, where β is a scalar-valued transverse damping coefficient, of the transverse term should be taken

into account and there is no general expression for β except that it should scale like the Mach

number.

Our goal in this paper is to improve boundary conditions proposed for example by Yoo et al. [12]

or Lodato et al. [14] by extending and testing them in two directions:

• Unstructured meshes: most CAA or DNS studies where characteristic methods have been

developed and tested, were performed with finite differences codes using simple structured

(i, j, k) meshes. To compute internal flows in piston engines [18] or in gas turbines [19, 20],

more complex meshes and methods must be used. The extension of characteristic methods in

such geometries requires specific attention and is discussed here.

• Most existing characteristic methods are developed and tested in the linear regime: the usual

test for NRBC is a weak vortex of maximum rotation speed Umax leaving the domain through

an outlet where the convection velocity is U0 ; tests are performed for α = Umax/U0 << 1.

In practice, for many geometries, vortices are created by the mean flow (for example in a

wake or behind a backward facing step) and propagate towards outlets with high rotational

velocities. When these strong vortices interact with outlet boundaries, α is often of order

unity. It is important to verify the efficiency of boundary conditions for such conditions and

testing NRBC for all vortex strengths is the second objective of this work. It becomes an

especially difficult issue when α is larger than unity and local velocities in outlet sections

become negative, transforming locally the outlet into an inlet for a limited period of time. In

such cases, strong noise may be created but even the robustness of the method may be at

stake.
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The target field of these tests is not CAA for which structured meshes and weak vortices (obtained

by adding buffer zones near boundaries) are common practice but rather LES or DNS of confined

flows like for example combustion chambers where the boundary condition should be non reflecting

over a large range of α.

The paper is organized as follows: first the formalism of Yoo et al. [12] is recalled and its imple-

mentation in an unstructured code is described. Second the resulting boundary condition is tested

on the convected vortex test case. For this case, the quality of the NRBC is tested by comparing

fields of axial velocities, pressure for various mean flow velocities and vortex strengths (up to strong

vortices where α is larger than unity). It is shown that multidimensional NRBC formulations of Yoo

et al. [12] must be extended in such cases to define which Mach number must be used to evaluate the

β parameter required for the transverse terms. Indeed, strong vortices change the mean convection

velocity at the outlet: this does not happen for weak vortices which do not modify the mean flow.

Finally, an application in a complex geometry, a non-moving turbine blade, is shown to illustrate

how the method works in a real configuration. The location of the outlet boundary condition, which

is directly linked to the level of perturbations reaching the boundary condition and the number

of grid points in the computational domain, is studied. A reference case for which the boundary

condition is located far enough from the blade (so that the outlet boundary condition formulation

does not affect the solution in the region of interest) is performed. Then, the outlet section is set

closer to the blade trailing edge to test the influence of the boundary condition in terms of numerical

stability and physical quantities compared to the reference case. Results show on both academic

and complex geometry cases that this extended boundary condition allows to let vortices leave the

domain with limited acoustic reflection even for strong vortices.

II. Governing equations

The set of conservation equations describing the evolution of a compressible flow with chemical

reactions reads:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (1)
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∂ρuj

∂t
+

∂

∂xi
(ρuiuj) +

∂p

∂xj
=
∂τij
∂xi

(2)

∂ρE

∂t
+

∂

∂xi
[ui (ρE + p)] =

∂

∂xi
(ujτij) +

∂

∂xi
(qi) + ω̇T (3)

∂ρk

∂t
+

∂

∂xi
ρk (ui + V c

i ) =
∂

∂xi
(Jki) + ω̇k (4)

where p is the pressure, ρ is the density of the fluid, −→u = (u1, u2, u3) is the velocity vector, E the

total energy per unit mass, ρk = ρYk for k = 1, N (N is the total number of species), Yk is the

mass fraction of species k, ω̇T is the rate of heat release, ω̇k is the reaction rate of species k. The

system is closed with the following relations:

• The equation of state for an ideal gas mixture writes:

p = ρrT, r =

N
∑

k=1

Ykrk =

N
∑

k=1

Yk
R

Wk
=

R

W
,

1

W
=

N
∑

k=1

Yk

Wk

where T the temperature and r the gas constant of the mixture which is defined from each

species gas constant rk, R = 8.13143 J/K/mol is the universal gas constant, Wk is the molar

mass of species k and W is the molar mass of the mixture.

• The viscous stress tensor is expressed as:

τij = 2µ

[

1

2

(

∂uj

∂xi
+
∂ui

∂xj

)

− 1

3
δij
∂ul

∂xl

]

where µ, the molecular viscosity, is expressed by the Sutherland’s law as:

µ = c1
T (3/2)

T + c2

Tref + c2

T
(3/2)
ref

where c1, c2 and Tref are constants.

• The correction velocity V c
i , needed to ensure global mass conservation, is:

V c
i =

N
∑

k=1

Dk
Wk

W

∂Xk

∂xi

where Xk is the mole fraction of species k.
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• Finally, the diffusive species flux, Jki, and the heat flux, qi, are:

Jki = ρDk
Wk

W

∂Xk

∂xi

qi = −λ ∂T
∂xi

where the heat conduction coefficient, λ, and the diffusion coefficient of the species k, Dk, are

computed from the viscosity µ as:

Dk =
µ

ρSck

λ =
µCp

Pr

where the Schmidt number Sck
is a constant depending on the species and the Prandtl number

Pr is assumed to be constant.

III. Navier-Stokes Characteristic Boundary Conditions (NSCBC)

The NSCBC approach [9] uses the Navier-Stokes equations in their characteristic form where

outgoing and ingoing waves can be identified. The outgoing waves can be computed from interior

points. The ingoing waves, on the other hand, which come from the outside of the domain, must be

prescribed to close the boundary problem. In NSCBC, the incoming wave amplitudes are imposed

under the LODI assumption. Once all waves are computed, balance equations are used to advance

the system in time. Under the LODI assumptions, the flow is assumed to be locally one-dimensional

and inviscid.

The limitations of the LODI assumption appear when the flow is three-dimensional at boundaries

; since the flow is not normal to the boundary, the LODI system of equations is not able to handle

flow distortions. Nicoud [21] and Yoo et al. [12] demonstrate the importance of taking into account

terms corresponding to derivatives which are parallel to the boundary to construct the amplitude

of ingoing waves.

The LODI equations on the boundary in their primitive and two-dimensional forms become (viscous,
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diffusive terms and body forces are neglected):

∂

∂t

































ρ

u1

u2

p

ρk

































+

































(L1 + L4 + 2L2) /2c
2

(L4 − L1) /2ρc

L3

(L4 + L1) /2

L4+k

































+

































(T1 + T4 + 2T2) /2c
2

(T4 − T1) /2ρc

T3

(T4 + T1) /2

T4+k

































=

































0

0

0

Sp

Sρk

































(5)

where c is the speed of sound and
−→
U = (ρ, u1, u2, p, ρk) is the primitive variable vector. The

amplitude vector of the characteristic waves (
−→L ) in Eq. (5) is given by:

−→L =

































L1

L2

L3

L4

L4+k

































=

































λ1

(

∂p
∂x1

− ρc∂u1

∂x1

)

λ2

(

c2 ∂ρ
∂x1

− ∂p
∂x1

)

λ3
∂u2

∂x1

λ4

(

∂p
∂x1

+ ρc∂u1

∂x1

)

λ4+k
∂ρk

∂x1

































(6)

where λi are the characteristic velocities:

λ1 = u1 − c, λ2 = λ3 = λ4+k = u1, λ4 = u1 + c (7)

The transverse terms in their two-dimensional form (
−→T ) and the source terms (

−→S ) are written as:

−→T =

































T1

T2

T3

T4

T4+k

































=

































u2

(

∂p
∂x2

− ρc∂u1

∂x2

)

+ γp∂u2

∂x2

u2

(

c2 ∂ρ
∂x2

− ∂p
∂x2

)

+ c2ρ∂u2

∂x2
− γp∂u2

∂x2

u2
∂u2

∂x2
+ 1

ρ
∂p
∂x2

u2

(

∂p
∂x2

+ ρc∂u1

∂x2

)

+ γp∂u2

∂x2

u2
∂ρk

∂x2

































(8)

−→S =









Sp

Sρk









=









ω̇T

ω̇k









(9)
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Equation 5 can be written in characteristic form, so called effective boundary conditions by Yoo et

al. [12]:

































(

∂p
∂t − ρc∂u1

∂t

)

(

c2 ∂ρ
∂t − ∂p

∂t

)

∂u2

∂t

(

∂p
∂t + ρc∂u1

∂t

)

∂ρk

∂t

































+

































L1

L2

L3

L4

L4+k

































+

































T1

T2

T3

T4

T4+k

































=

































Sp

−Sp

0

Sp

Sρk

































(10)

For a subsonic outflow, all waves go out except the acoustic wave travelling at the speed u1 − c

corresponding to L1. Li (i = 2, .., 4 + k (5 + k) are directly determined by the expressions in (6).

L1 is computed using (10):

(

∂p

∂t
− ρc

∂u1

∂t

)

+ L1 + T1 = Sp (11)

The evaluation of the L1 is a crucial step in the treatment of the boundary condition. Poinsot and

Lele [9] prescribed the amplitude of the incoming wave to be fixed at:

L1 = K(p− pt) (12)

where K is the pressure relaxation coefficient and pt the target pressure. The form of the coefficient

K was proposed by Rudy and Strikwerda [22]:

K = σc
(

1 −M2
)

/lx1 (13)

where M is the maximum Mach number on the boundary, lx1 is the characteristic size of the

domain in x1 direction and σ is a constant usually set to 0.25 [9, 12]. This expression of L1

makes the boundary condition only partially nonreflecting (if K 6= 0) but ensures that the mean

pressure remains close to the target pressure pt. A perfectly nonreflecting boundary condition

is obtained when K is set to zero, leading to a zero amplitude of the incoming wave. However,

for a perfectly nonreflecting boundary condition, the target pressure often cannot be maintained.

Moreover, Eq. (11) often leads to unacceptable reflection at outlets when vortices leave the domain

as pointed out by multiple authors [10–14, 23, 24].

Taking into account both works of Yoo et al. [12] who included the transverse contribution in the
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expression of L1 and Sutherland and Kennedy [23] who recognized that the source terms should be

neglected, the effective boundary condition can be written as:

(

∂p

∂t
− ρc

∂u1

∂t

)

+K(p− pt) + βT1 = 0 (14)

or equivalently:

L1 = K(p− pt) + (β − 1)T1 (15)

where β ∈ [0, 1] is a transverse damping parameter. When the parameter β is set to one, the LODI

assumption is recovered. In the study of Yoo and Im [13], the convected vortex test case presented

for β = 1 shows a tendancy to push the vortex out of the domain too fast. On the other hand,

when β = 0 the boundary seems to resist and damp out the vortex. The most suitable value for

β was found, under the low Mach number asymptotic analysis, to be equal to the reference Mach

number [13]. This analysis was reported to be also valid for other flows [24].

IV. Unstructured grid implementation

The ability to distinguish transverse and normal terms is obviously needed in Eq. (10) since

their treatment is different. This is a straightforward task on structured grids where boundaries are

usually one of the mesh planes (i, j or k constant); however, on unstructured grids, this is not the

case anymore. Indeed, on unstructured grids, the boundary can be composed of edges of various

elements. This section presents (1) how to estimate the transverse terms
−→T presented in Eq. (8)

and (2) a practical implementation in a subsonic compressible code.

Using the cell-vertex formalism, the quantity which is actually used is the nodal residual
−→Rn

i

(
−→R). The relationship between this residual and the quantities of interest,

−→L and
−→T , is presented

in Appendix A. Knowing the vector of primitive variables
−→
V

n
at time t, the vector

−→
V

n+1
at time

t+ ∆t is computed for each node i as:

−→
V

n+1

i =
−→
V

n

i − ∆t
Vi

−→Rn

i (16)

(
−→
V

n+1
=

−→
V

n − ∆t

Vi

−→Rn

i )
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where Vi is the nodal volume around node i and
−→Rn

i is the nodal residual at node i computed

by the numerical scheme.

The outlet-boundary nodal residual
−→Rn

i needs to be corrected on all nodes which are on the

boundary. For this, using Eq. (5), the residual
−→RP

predicted by the numerical scheme is first

decomposed as:

−→RP
=

−→RP

in +
−→RP

out =

































L1+T1

2c2

−L1+T1

2ρc

0

L1+T1

2

0

































+

































2[L2+T2]+L4+T4

2c2

L4+T4

2ρc

L3 + T3

L4+T4

2

L4+k + T4+k

































(17)

To compute the corrected values of the residual
−→RC

which will replace
−→RP

, the normal and trans-

verse parts of
−→RP

in (RP
in) are first computed. Using the cell-vertex formalism, two different strate-

gies can be used: (1) an exact strategy would be to use the numerical scheme on the normal and

transverse part of the variables to estimate the normal and transverse residuals. However, this

method is not retained as it is too expensive in terms of both CPU cost and memory requirement.

Therefore, (2) the transverse part is estimated while computing the divergence of the transverse

flux on all cells which have a node on the boundary [25]:

−→RP

in,T |cell =
−→∇ · −→F = − 1

DVc





∑

j∈Ωc

[−→F j −
(−→F j · −→n i

)

−→n i

]

· −→N j



 (18)

where
−→F =

(−→
F ,

−→
G,

−→
H

)

is the flux (
−→
F ,

−→
G and

−→
H are defined in Appendix A), D is the number of

dimension, Vc is the volume of the cell Ωc, Ωc is each cell with a vertex j on the boundary patch,

ni is the inward normal to each node i of the boundary patch, Nj is the outward normal to each

vertex j of the cell Ωc.

The transverse part of the residual on node i,
−→RP

in,T (RP
in,T ), is then recovered by scattering the

weighted residual on the cells c surrounding this node:

−→RP

in,T =
1

Vi

∑

c,i∈Ωc

(

Vc

Ic

−→RP

in,T |cell

)

(19)

where Vi =
∑

c,i∈Ωc

Vc

Ic
and Ic is the number of nodes in each cell. The normal contribution is then

11



retrieved:

−→RP

in,N =
−→RP

in −−→RP

in,T =

































L1

2c2

− L1

2ρc

0

L1

2

0

































(20)

which leads to the decomposition:

−→RP
=

−→RP

in,N +
−→RP

in,T +
−→RP

out (21)

To evaluate the corrected residual
−→RC

, this incoming predicted contribution
−→Rin,N is removed from

the residual
−→RP

while the corrected contribution
−→RC

in is added:

−→RC
=

−→RP −−→RP

in,N +
−→RC

in (22)

where
−→RC

in is written as:

−→RC

in =

































K(p−pt)−(1−β)T1

2c2

−K(p−pt)−(1−β)T1

2ρc

0

K(p−pt)−(1−β)T1

2

0

































(23)

The effective boundary condition on the incoming wave then corresponds to the one obtained in

Eq. (14). The final equation can also be written as:

−→
V

n+1

i =
−→
V

n

i − ∆t
Vi

[−→RP − −→RP

in,N +
−→RC

in

]

(24)

(
−→
V

n+1
=

−→
V

n − ∆t

Vi

[−→RP −−→RP

in +
−→RC

in

]

)

The code used here works with the conservative variables which are retrieved by multiplying Eq. (24)

by a transformation matrix noted A−1 (cf. Appendix A for details).

V. Results

Computations are performed with the AVBP solver. This Computational Fluid Dynamic (CFD)

solver is a fully 3D code solving the unsteady, compressible, multi-species Navier-Stokes equations
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on unstructured grids using the cell-vertex finite volume approximation [26]. For the present study,

a two-step Taylor Galerkin numerical scheme [16, 27] is chosen, providing a third-order accuracy in

space and time.

A. Convected Vortex

To evaluate the ability of the nonreflecting boundary condition (K = 0 in Eq. (15)) to handle

outgoing vortices, a typical convected vortex case [9, 14] is first performed. A single vortex is super-

imposed on a homogeneous flow field and is convected through the outlet boundary condition. The

stream function, ψ, of the initial vortex is defined as:

ψ(x1, x2) = Γe
(x1−x1c)2+(x2−x2c)2

2R2
c (25)

where Γ is the vortex strength, (x1c, x2c) are the coordinates of the vortex center and Rc is the

radius of the vortex. The velocity field and the maximum velocity induced by the vortex are given

by:

u1 =
∂ψ

∂x2
, u2 = − ∂ψ

∂x1
, Umax =

Γ

Rc
√
e

(26)

The corresponding initial pressure field is given by:

p− p∞ = − ρΓ2

2R2
c

e
(x1−x1c)2+(x2−x2c)2

R2
c (27)

where p∞ is the reference pressure.

The computational domain is a square of dimension L = 0.013m to match the configuration used

in [14] with 40 grid points in each direction. The reference pressure and temperature are 101300Pa

and 300K respectively, and the gas is nitrogen. The initial vortex is added to a uniform mean flow

of velocity U0. It is located at the center of the domain so that (x1c, x2c) = (0, 0). Its radius is set

to 0.0013m, which is 10% of the box size L. A periodicity condition is applied to bottom and top

boundaries to avoid corner issues discussed by Lodato et al. [14].

Most authors indicate that the damping parameter β should be of the order of the Mach number [13,

14, 24]. The difficult question is to know which Mach number should be used, especially in flows

where the outlet velocity field changes significantly both with time and position. Yoo and Im [13]
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used a constant reference Mach number M = M∞ for their tests. However, this definition is not well-

suited for complex flows where the Mach number can locally vary within a wide range of values and

choosing a mean "reference" Mach can be difficult (typically a high speed jet crossing a boundary).

Lodato et al. [14] chose the reference Mach number for their vortex test case, β = M∞, and the

maximum Mach number over the whole domain for their spherical pressure wave test. In the present

work, two different strategies are tested for the damping parameter:

• β = β(−→x , t) = M(−→x , t) = u1(
−→x ,t)

c(−→x ,t)
: using a local Mach number on the boundary nodes allows

to take into account velocity variations on the boundary.

• β = β(t) = M(t) =
(

u1(−→x ,t)

c(−→x ,t)

)

: using a mean Mach number averaged in space over the exit

section on the boundary nodes combines the advantages of the two options M∞ and M(−→x , t).

Note that in the above expression, (.) denotes an average over the exit section. The three boundary

conditions analysed in this paper are presented in Table 1.

To analyse their performance, four different cases are performed (Table 2). Cases A and B are two

Name β

BC1 Poinsot and Lele [9] 1

BC2 Yoo et al. extension [12] M(−→x , t)

BC3 Yoo et al. extension [12] M(t)

Table 1 Tested boundary conditions. The parameter β controls the level of integration of the

transverse terms in the ingoing wave: L1 = K(p− pt) + (β − 1) T1 (Eq. (15)).

Case U0 (m.s−1) M∞ Γ (m2.s−1) α = Umax/U0(%)

A 10 0.028 0.011 50

B 10 0.028 0.066 300

C 100 0.28 0.11 50

D 100 0.28 0.022 100

Table 2 Convected vortex parameters.

cases at low Mach number (0.028) while cases C and D are performed for a mean Mach number

which is ten times higher (0.28). Case A presents the evolution of a weak vortex (α < 1). A very
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strong vortex (α > 1) is performed in case B where the maximum velocity induced by the vortex is

three times higher than the mean velocity. The flow at the boundary will thus locally switch from

outcoming to incoming.

Figures 1 to 8 display normalized pressure and velocity fields illustrating the performances of the

three conditions BC1, 2 and 3 for the four test cases of Table 2. The normalized pressure field p∗ is

defined using the initial pressure at the vortex center p(0, 0):

p∗(−→x , t∗) =
p(−→x , t∗) − p∞
p(0, 0) − p∞

= − (p(−→x , t∗) − p∞)
2R2

c

ρΓ2
(28)

where t∗ is a dimensionless time given by t∗ = t/τ with τ = L/2U0: i.e. the vortex begins to

interact with the outlet boundary around t∗ = 0.5 and leaves the domain at t∗ = 1.0.

Figures 1, 3, 5 and 7 show isocontours of the axial velocity and normalized pressure fields in gray

scale. These figures present early moments of the simulation (t∗=0, 0.45, 1.12 and 1.43) to analyse

the evolution of the vortex when it leaves the box. More quantitative comparisons of methods

BC1, 2 and 3 are given using one-dimensional profiles along the right boundary (i.e. x1 = L/2)

in Figs. 2, 4, 6 and 8 once the vortex has left the domain at dimensionless times 1.25, 1.5 and

1.75. These are the most critical instants for the simulation because the vortex has left the domain

almost completely and any perturbation due to the boundary condition appears clearly. Finally,

the temporal evolution of the normalized mean pressure in the whole domain as a function of the

dimensionless time t∗ is given in Fig. 9.

Spatial evolutions

Low Mach Number (M∞=0.028): Cases A and B

Figures 1 and 3 compare the effect of the velocity induced by the vortex on the boundary

condition for a low-speed mean flow. For this case, the parameters of the strong vortex are set such

that the mean convection velocity sign is changed (for instance for case B, the induced velocity

ranges from 40m/s to -20m/s) so that the outlet can be an inlet for a short period of time when the

vortex leaves the domain. First, for both a weak (case A, α = 50%) and a strong (case B, α = 300%)

vortex, the LODI assumption (BC1) is not able to handle the distortions induced by the vortex.
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For a weak vortex, in Fig. 1, the reflections at the boundary are significant and the axial velocity

isocontours are very disturbed. For a strong vortex, Fig. 3 shows that the boundary condition

fails to let the vortex leave the domain correctly. The simulations performed with BC2 exibit an

intriguing behavior: on the one hand, the axial velocity isocontours are not really perturbed but on

the other hand, the pressure is very disturbed: when the vortex reaches the boundary, the pressure

drops below the mean value (at t∗ = 1.12 on both Fig. 1 and Fig. 3) and then starts to recover.

Such instabilities have already been mentioned by Yoo and Im [13]. When the BC3 method is used

however, no such behavior is observed. Neither the velocity isocontours nor the pressure field are

affected when the vortex reaches the boundary. Figures 2 and 4 are plotted at times further away

from t∗ = 1 to check the pressure levels in the computational domain after the vortex has left the

domain. In Figs. 2 and 4, at t∗ = 1.25, simulations with BC3 give excellent results compared to the

analytical solution. Even if the axial velocity changes sign and becomes negative, the boundary is

still able to handle the vortex. As observed in the 2D fields, Figs. 2 and 4 show that BC1 results

deviate strongly from the analytical solution (solid line). The symmetry of the velocity profile is

already lost even for the weak vortex in Fig. 2. At t∗ = 1.5 in Fig. 2, the vortex has left the

domain, but BC1 is still oscillating whereas BC2 and 3 are close to the mean pressure. However, in

Fig. 4, BC3 is the only method for which pressure has recovered its analytical value. The pressure

field is also homogeneous for BC2 but its value (∼ −0.16) has drifted from the expected value. At

t∗ = 1.75, for the strong vortex (Fig. 4) the LODI simulation fails earlier and is not represented

here. At this time the vortex has left the domain, Figs. 2 and 4 confirm that only the BC3 method

using β = M(t) is able to recover the mean pressure of the flow.

High Mach Number (M∞=0.28): Cases C and D

Figures 5 and 7 present the results for cases C and D where M∞ is ten times higher than for

cases A and B. Interestingly, for these cases, the classical LODI assumption (BC1) gives quite

good results compared to the ones obtained with a lower M∞ (Fig. 1 to 4). The distortions

of the axial velocity isocontours in Fig. 5 are less important for case C than those observed in

Figs. 1 and 3. This result is coherent with the original paper of Poinsot and Lele [9] where
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the LODI assumption gave excellent results for a vortex convected on a mean flow which was

supersonic. Lodato et al. [14] also performed simulations with a mean Mach number up to 0.8

using the LODI assumption. On their Fig. 8, the velocity isocontours are not disturbed while

using such a high mean Mach number. When BC2 is used, case A shows a large variation of

the pressure after the vortex has reached the boundary. However, this is not observed here,

or at least in much smaller proportions, for cases C and D. Distortions of the velocity isocon-

tours are not observed in both cases. Finally, BC3 gives excellent results for both cases. At

all times plotted in Figs. 6 and 8 the distortions generated on the pressure field while using

the LODI assumption appears to oscillate. At t∗ = 1.25, on both Figs. 6 and 8 the values of

the axial velocity for the LODI assumption already started to drift away from the analytical solution.

Temporal evolutions

Figure 9 summarizes the results for the vortex test case by plotting the mean pressure in the

whole domain nondimensionalized by its initial value as a function of time for all cases. For the

weak vortices (left column), the BC1 runs (triangles) experience a very high peak around t∗ = 1

for both cases and then hardly manage to reach p∗ = 0 even at t∗ = 4. This confirms that strong

acoustic reflections are generated when the vortex leaves and that the flow needs a long time to

recover. A smaller peak for case A is seen by the use of BC2. BC3 fits the analytical solution well

and does not generate spurious reflections. For strong vortices (right column), the conclusions are

similar: BC1 fails to compute case B (the code stops because of nonphysical (non physical) values

for temperature). The simulation performed with BC2 presents a peak before the vortex reaches

the boundary (t∗ = 0.8) and then underestimates the pressure evolution. BC3 handles this critical

vortex very well.

B. Turbine blade

In the wake of a turbine blade, strong vortices are produced. These vortices, when reaching the

outlet boundary condition, may lead to large spurious reflections which can perturb the flow along

the blade. This flow is therefore a good prototype to test outlet boundary conditions in a more
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realistic case than the usual vortex flow. Of course, extending the domain far downstream of the

blade is a solution to minimize the effects of the outlet boundary condition so that, when setting

up the location of the outlet boundary condition of such a simulation, two conflicting requirements

must be satisfied: (1) limit the size of the computational domain to reduce the CPU time and

(2) ensure that the reflections induced by the boundary condition do not affect the flow along the

blade. The ability of boundary conditions BC1 to 3 to fulfill these two requirements is assessed in

this section.

Configuration

The configuration corresponds to the blade studied experimentally by Sieverding et al. [28, 29]

(Table 3). The computation is performed in two dimensions. This is sufficient to evaluate the

Chord length 140 mm

Axial chord length 91.8 mm

Trailing edge diameter 7.4 mm

Inlet angle (from axial direction) 0◦

Table 3 Blade characteristic dimensions.

effects of boundary conditions. Moreover, even though a detailed comparison with the experiment

is out of scope for the present study, the agreement between experimental data and the present

LES is actually very good (as shown below) suggesting that three dimensional effects have a second

order influence on the flow statistics.

Figure 10 shows the reference 2D computational domain where the outlet boundary condition

is located 10 chords away from the blade trailing edge where a chord, noted C, is the length

of the blade. The inlet boundary condition imposes a total pressure and a total temperature.

The inlet Mach number is equal to 0.19 and its associated Reynolds number is about 2.8 × 106.

Both top and bottom boundary conditions are set as periodic. The outlet boundary condition is

switched between the three boundary conditions previously mentioned in section VA. However,

unlike the academic vortex test, an outlet pressure must be maintained. To do so, the relax

parameter K in Eq. (15) is not null like for the vortex test case but set to K = 500s−1 so that the
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boundary condition is quasi-nonreflective. The simulated case is not very sensitive to the value of

the relax parameter: tests (not shown here) with reasonable changes for K from 200s−1 to 1000s−1

lead to the same conclusions. Note that the location of the probe placed in the wake of the blade

used to analyse the signals of each simulations is represented by a cross in Fig. 10.

Impact of the location of the outlet boundary condition

On such a complex geometry, special care is needed to isolate the influence of the boundary

condition. Unlike the vortex test case, multiple vortices are continuously created at the blade

trailing edge and no analytical solution is available. In order to get a reference simulation, the

outlet boundary condition is first placed far away from the blade trailing edge (Loutlet/C = 10). At

this distance, the flow is homogeneous and gradients are null. In other words, for this "reference"

simulation the three BCs should be equivalent.

Reference case: Loutlet/C = 10

Figure 10 top shows the computational grid while Fig. 10 bottom shows an instantaneous field

of ∇ρ. The vortices generated in the wake of the blade remain quite strong right after the blade

trailing edge. As expected, 10 chords away from the blade trailing edge, the perturbations reach-

ing the outlet boundary condition are very small. Figure 11 shows the time-averaged isentropic

Mach distribution along the blade wall and the time-averaged pressure distribution along the blade

trailing edge for this reference simulation using BC1, 2 or 3. The experimental mean isentropic

Mach distribution agrees extremely well with the ones predicted by the simulations. Moreover, the

formalism used for outlet boundary condition has no impact on the simulations validating the fact

that this simulation can be used as a reference for other simulation performed with shorter outlets.

To quantify the intensity of vortices shed behind the blade, spatial-averages of the time-averaged

Root Mean Square (RMS) pressure at various axial locations are calculated for the reference case

(Table 4). An estimation of the α parameter introduced for the vortex case (the vortex rotation

speed normalized by the average flow speed) is also given. As expected, the level of perturbation

increases while getting closer to the blade trailing edge. The perturbations at x1/C = 1 are almost
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Cutting plane position (x1/C) 1 1.5 2 3 5 8 10

PRMS (Pa) 4154 2362 1617 1161 872 832 765

α = Umax/U0 (%) 141 80 45 < 5 < 5 < 5 < 5

Table 4 Spatial-average value of the time-averaged RMS pressure and of the α parameter at

different cutting planes for the reference simulation (Loutlet/C = 10).

3 times higher than the one experienced at x1/C = 2: the vortices shed behind the blade (Fig.10)

are dissipated rapidly, not only because of turbulent dissipation but also because the grid becomes

coarser after x1/C = 1 (Fig. 10 top). The objective here is not to compute the evolution of vortices

in this zone but to make sure that they do not affect the pressure distribution on the blade. Note

however, that the vortex rotation speed (measured by α) increases rapidly when x1/C decreases: at

x1/C = 1 the vortices are so intense (α = 140%) that the sign of the velocity normal to the cutting

plane changes. For simulations with smaller domains (Loutlet/C = 1 or 2), the outlet boundary

condition has to handle strong vortices and even negative velocities, similarly to the vortex test case

of Section VA.

Once the reference simulation is available, the strategy is then to move the location of the outlet

boundary condition closer to the blade trailing edge and repeat the simulation. Preliminary simu-

lations (not shown here) at various positions with the three BCs have shown that BC1 is not able

to let the simulation run when the outlet boundary condition is brought closer than 2 chords from

the blade trailing edge (position b in Fig. 10 corresponding to Loutlet/C = 2): BC1 fails between 1

and 2 chords away from the blade trailing edge because it cannot handle vortices which are more

intense than the ones experienced at 2 chords (Table 4). On the other hand, BC2 and BC3 let the

simulation run for all lengths of the exhaust duct Loutlet (down to 1 chord away from the blade

trailing edge) confirming their beneficial effect on stability: these boundary conditions allow the

simulation to run even when very high level of perturbations are encountered at the outlet. To

highlight the influence of each BC on the simulation, two characteristics locations are retained to

present the results:

• 2 chords (position b in Fig. 10): a typical location for the outlet boundary condition for such

simulations and the closest location to the blade trailing edge where the three BCs are able
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to let the simulation run.

• 1 chord (position c in Fig. 10): used to discriminate BC2 and BC3 and the closest location

which ensures that no physical phenomenon (such as vortex shedding for instance) is removed

from the analysis.

Comparison of BC1, BC2 and BC3 for Loutlet/C = 2

Figure 12 shows the mean isentropic Mach distribution along the blade wall and the mean

pressure distribution along the blade trailing edge for all BCs when the exhaust duct length is

shortened to Loutlet/C = 2. Strong vortices cross this section ( α = 45 (α = 80)) but the velocity

is always outgoing (the outlet remains an outlet at all times). The fields measured at the outlet

of this simulation are compared to the fields obtained at x1/C = 2 in the reference simulation

(Loutlet/C = 10). All BCs reproduce the reference case qualitatively but some discrepancies are

observed. On both graphs, BC3 results are closer to the reference case (solid line). Figure 13

presents the temporal evolution of the pressure recorded at the probe (the position of the probe is

marked by a cross in Fig. 10 and remains at the same position for all simulations). Here, BC1 differs

from both BC2 and BC3: BC1 leads to high pressure fluctuations due to higher spurious reflections

on the outlet. Both BC2 and BC3 present levels of pressure fluctuations matching the reference

case. Table 5 shows the spatial-average value of the time-averaged RMS pressure in a cutting plane

located at 1.5 chords.

The deviation presented by BC1 from the reference case is very large. BC2 and BC3 are close to

Reference (Loutlet/C = 10) BC1 (Loutlet/C = 2) BC2 (Loutlet/C = 2) BC3 (Loutlet/C = 2)

PRMS (Pa) 2362 4142 2785 2447

Table 5 Spatial-average value of the time-averaged RMS pressure in a cutting plane located at

1.5 chords for the reference case (Loutlet/C = 10), and the 2 chords simulations (Loutlet/C = 2)

using BC1, BC2 and BC3.

the reference case even if BC3 agrees better with the levels calculated with the reference case.
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Comparison of BC2 and BC3 (BC1 fails) for Loutlet/C = 1

When the computational domain is shortened again to position c in Fig. 10, the outlet boundary

condition is hit by very strong vortices (α = Umax/U0 of the order of 140%, Table 4) which can even

lead to locally ingoing velocities, a difficult test for boundary conditions. BC2 and BC3 allow the

simulation to run but BC1 fails. The previous quantities of interest along the blade are examined

again in Fig 14. BC2 results are strongly perturbed. The isentropic Mach number profile on the

blade does not match the reference case result. The flow is supersonic along almost half of the

suction side (extrados) of the blade while the reference case is mostly subsonic. In this particular

configuration, the physics of the simulation around the blade are changed by the formalism of the

outlet boundary condition, leading to non physical results. On the other hand, BC3 remains close

to the values predicted by the reference case and the overall profile is the same. For this case where

strong vortices impact the outlet section, the results obtained in simple test cases (Section VA) are

recovered: the best solution is to use a coefficient β in the transverse terms given by the averaged

Mach on the outlet section (β = M(t)). The other methods lead either to a blow up of the simulation

(BC1, the original LODI formulation) or to nonphysical results (BC2 where the local Mach number

is used for β).

VI. Conclusions

The two objectives of this paper are (1) to show how characteristic methods, usually developed

for solvers using (i, j, k) structured grids, can be extended to arbitrary unstructured meshes based

on cell-vertex residual methods and (2) to check how such boundary conditions perform when

strong vortices, inducing large changes of outlet normal velocity and even negative outlet speeds,

are convected through the boundary. These questions are crucial for Large Eddy Simulation of

compressible flows where vortices leaving the computational domain do not have to be weak as in

most academic studies of boundary conditions and can induce very large outgoing speed changes.

Three nonreflecting boundary conditions are tested for a vortex of maximum rotation speed Umax

convected through a subsonic outlet at an average velocity U0: BC1, the classical Local One-

Dimensional Inviscid (LODI) Navier-Stokes Characteristics Boundary Conditions (NSCBC) method,
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and two three-dimensional extensions of the LODI method: BC2, where the Mach number used to

evaluate the damping coefficient, β, of the additional transverse terms is the local instantaneous

Mach number at each point of the outlet and BC3, where the β term is evaluated from the space-

averaged value of the Mach number on the outlet section. Obviously, for very weak vortices convected

by a high-speed flow (α = Umax/U0 << 1), BC2 and BC3 would be equivalent. However, when

α increases, this is no longer true and results show that in all cases, BC3 performs better than

BC2. For all tests, BC2 and BC3 which include transverse terms in the evaluation of the ingoing

wave, perform better than the usual one-dimensional LODI (BC1) method even though tests show

that this method gives reasonable results when the mean outlet Mach number is large enough,

thereby confirming why previous authors found LODI to be appropriate when they performed tests

in high-speed flows. The three boundary conditions are then tested on a complex geometry case:

a turbine blade. For this flow, vortices are constantly generated at the blade trailing edge and

impact the outlet section with high rotational speeds making the choice of the boundary condition

crucial. A reference run is performed by using a very long domain (10 chords) where vortices are

dissipated before they reach the outlet. Two shorter domains (two and one chords) are then tested

to investigate the responses of BC1, 2 and 3 to vorticity perturbations reaching the boundary. The

same hierarchy as the vortex case is reported for BC1, BC2 and BC3: BC1 was not able to handle

high levels of perturbations whereas BC2 and BC3 performed well even for shorter domains and

high levels of perturbation. However, BC3 provides the best agreement with the reference solution,

showing that the current choice for the β coefficient is the averaged value of the Mach number on

the outlet section.

Appendix A

While neglecting viscous, diffusive terms and body forces, Eqs. (2) - (4) can be written in

matrix notation:

∂
−→
U

∂t
+
∂
−→
F

∂x1
+
∂
−→
G

∂x2
+
∂
−→
H

∂x3
= 0 (29)
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where
−→
U is the vector of conserved variables

−→
U = [ρu1, ρu2, ρu3, ρE, ρk]

t
. The fluxes in x1, x2 and

x3 directions are:

−→
F =

[

ρu1u1 + p (P), ρu2u1, ρu3u1, ρHu1, ρku1

]t

(30)

−→
G =

[

ρu1u2 + p (P), ρu2u2, ρu3u2, ρHu2, ρku2

]t

(31)

−→
H =

[

ρu1u3 + p (P), ρu2u3, ρu3u3, ρHu3, ρku3

]t

(32)

where H is the total enthalpy as: ρH = ρE + p (P).

Three transformation matrices A, AΩ and B (Table 6) are needed to transform the vector of con-

servative variables
−→
U into the vector containing the characteristic wave amplitudes’

−→L :

C = AAΩB (33)

with:

−→
U = C

−→L (34)

(
−→
i ,
−→
j ,
−→
k ) (−→n ,−→t 1,

−→t 2)

∂
−→
U ∂

−→
V ∂

−→
V n

−→
L

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∂(ρu1)

∂(ρu2)

∂(ρu3)

∂(ρE)

∂ρk

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

→

←

A−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∂u1

∂u2

∂u3

∂p

∂ρk

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

AΩ

→

←

A−1

Ω

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

∂un

∂ut1

∂ut2

∂p

∂ρk

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

B

→

←

B−1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

(un + c)
“

∂un

∂n
+ 1

ρc

∂p

∂n

”

(un − c)
“

− ∂un

∂n
+ 1

ρc

∂p

∂n

”

un
∂ut1
∂n

un
∂ut2
∂n

un

“

∂ρk

∂n
−

Yk

c2
∂p

∂n

”

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Table 6 Summary of the transformation matrices.
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The three matrices A, AΩ and B are expressed as:

A =

















































1
ρ 0 0 0 −u1

ρ . . . −u1

ρ

0 1
ρ 0 0 −u2

ρ . . . −u2

ρ

0 0 1
ρ 0 −u3

ρ . . . −u3

ρ

− γ̂ (β)u1 − γ̂ (β)u2 − γ̂ (β)u3 γ̂ (β) γ̂ (β)ec + χ1 . . . γ̂ (β)ec + χk

0 0 0 0 1 . . . 0

...
...

...
...

...
. . .

...

0 0 0 0 0 . . . 1

















































(35)

AΩ =

















































nx ny nz 0 0 . . . 0

t1x
t1y

t1z
0 0 . . . 0

t2x
t2y

t2z
0 0 . . . 0

0 0 0 1 0 . . . 0

0 0 0 0 1 . . . 0

...
...

...
...

...
. . .

...

0 0 0 0 0 . . . 1

















































(36)

B =

















































1 0 0 1
ρc 0 . . . 0

−1 0 0 1
ρc 0 . . . 0

0 1 0 0 0 . . . 0

0 0 1 0 0 . . . 0

0 0 0 −Y1

c2 1 . . . 0

...
...

...
...

...
. . .

...

0 0 0 −YN

c2 0 . . . 1

















































(37)

where (−→n ,
−→
t1 ,

−→
t2 ) is the basis normal to the boundary: −→n = nx

−→
i +ny

−→
j +nz

−→
k is the inward vector

normal to the boundary and
−→
t 1 = t1x

−→
i + t1y

−→
j + t1z

−→
k and

−→
t 2 = t2x

−→
i + t2y

−→
j + t2z

−→
k are the

tangential ones, ec is the kinetic energy, γ̂ (β)= γ−1, γ is the ratio between specific heat capacities
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at constant volume and pressure:

γ =
Cp

Cv
Cv =

∑

k=1,N

YkCvk Cp =
∑

k=1,N

YkCpk

end χk is a parameter equal to:

χk = rkT − βesk esk =

∫ T

0

CvkdT

where esk is the sensible energy of species k.
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Case A

M∞=0.028 and α=50%

t*=0 0.45 1.12 1.43

BC1

BC2

BC3

Fig. 1 Streamwise velocity isocontours and normalized pressure field p∗ (gray scale) for case

A. Frames are taken at four distinct dimensionless times (from left to right): t*=(0, 0.45,

1.12, 1.43).
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Case A

M∞=0.028 and α=50%

p* Axial velocity (m.s−1)
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Fig. 2 Normalized pressure field (left column) and axial velocity (right column) plotted against

distance x2 at x1 = L/2 for case A: (△) BC1, (�) BC2, (O) BC3, (-) Analytical solution.
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Case B

M∞=0.028 and α=300%

t*=0 0.45 1.12 1.43

BC1

BC2

BC3

Fig. 3 Streamwise velocity isocontours and normalized pressure field p∗ (gray scale) for case

B. Frames are taken at four distinct dimensionless times (from left to right): t*=(0, 0.45,

1.12, 1.43).
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Case B

M∞=0.028 and α=300%

p* Axial velocity (m.s−1)
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Fig. 4 Normalized pressure field (left column) and axial velocity (right column) plotted against

distance x2 at x1 = L/2 for case B: (△) BC1, (�) BC2, (O) BC3, (-) Analytical solution.
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Case C

M∞=0.28 and α=50%

t*=0 0.45 1.12 1.43

BC1

BC2

BC3

Fig. 5 Streamwise velocity isocontours and normalized pressure field p∗ (gray scale) for case

C. Frames are taken at four distinct dimensionless times (from left to right): t*=(0, 0.45,

1.12, 1.43).

32



Case C

M∞=0.28 and α=50%

p* Axial velocity (m.s−1)
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Fig. 6 Normalized pressure field (left column) and axial velocity (right column) plotted against

distance x2 at x1 = L/2 for case C: (△) BC1, (�) BC2, (O) BC3, (-) Analytical solution.
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Case D

M∞=0.28 and α=100%

t*=0 0.45 1.12 1.43

BC1

BC2

BC3

Fig. 7 Streamwise velocity isocontours and normalized pressure field p∗ (gray scale) for case

D. Frames are taken at four distinct dimensionless times (from left to right): t*=(0, 0.45,

1.12, 1.43).
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Case D

M∞=0.28 and α=100%

p* Axial velocity (m.s−1)
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Fig. 8 Normalized pressure field (left column) and axial velocity (right column) plotted against

distance x2 at x1 = L/2 for case D: (△) BC1, (�) BC2, (O) BC3, (-) Analytical solution.
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α≪ 1 α ≥ 1
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Fig. 9 Mean pressure in the whole domain (nondimensionalized by its initial value) versus the

dimensionless time t∗ for the four cases A (top left), B (top right), C (bottom left) and D

(bottom right): (△) BC1, (�) BC2, (O) BC3, (-) Analytical solution.
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Fig. 10 Computational grid and field of ∇ρ for the reference case with an outlet boundary

condition at 10 chords (Loutlet = 10C). The black cross indicates the location of the probe.
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Fig. 11 Time-averaged isentropic Mach distribution along the blade wall (left) and time-

averaged pressure distribution along the blade trailing edge normalized by the inlet pressure

(right) for an outlet boundary condition located 10 chords away from the blade trailing edge

compared to the experiment: (△) BC1, (2) BC2, (O) BC3, (�) Experiment.
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Fig. 12 Time-averaged isentropic Mach distribution along the blade wall (left) and time-

averaged pressure distribution along the blade trailing edge normalized by the inlet pressure

(right) for an outlet boundary condition located 2 chords away from the blade trailing edge

(Loutlet/C = 2): (△) BC1, (2) BC2, (O) BC3, (-) Reference simulation (Loutlet/C = 10).
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Fig. 13 Temporal evolution of the pressure fluctuation, normalized by the time-averaged

pressure drop in the domain, at the probe shown in Fig. 10 for the outlet boundary condition

located 2 chords away from the blade trailing edge (Loutlet/C = 2): (△) BC1, (2) BC2, (O)

BC3, (-) Reference simulation (Loutlet/C = 10).
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Fig. 14 Time-averaged isentropic Mach distribution along the blade wall (left) and time-

averaged pressure distribution along the blade trailing edge normalized by the inlet pressure

(right) for an outlet boundary condition located 1 chord away from the blade trailing edge

(Loutlet/C = 1): (2) BC2, (O) BC3, (-) Reference simulation (Loutlet/C = 10).
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