
Transferring Large Eddy Simulation tools from laboratories

experts to industry users: a challenge for the INCA community

A. Dauptain a, G Frichet a, F. Duchaine a, E. Riber a, G. Dejean a, T. Poinsot b,
a CERFACS, 42 avenue G. Coriolis, 31 057 Toulouse Cedex 01, France
b IMFT, 1 allée du professeur Camille Soula, 31 400 Toulouse, France

Received *****; accepted after revision +++++

Presented by A. Dauptain

Abstract

This paper describes a methodology to build automatically industrial-proof versions of research softwares devel-
oped in the academic community (typically Large Eddy Simulation tools for combustion). The present method-
ology is built upon feature modeling, an application of graph theory to computer science. The necessity of such
tools within INCA is first demonstrated and examples highlighting their advantages are discussed on the basis of a
project called C3S developed by CERFACS and SAFRAN in the last four years. In particular, such an approach is
compulsory to master the complexity of multi-models simulations, and proved to be beneficial for both academic
and industrial users. This point is evidenced in the present paper with an application to conjugate heat transfer
in a gas turbine solved by code coupling.

To cite this article: A. Dauptain, G. Frichet, C. R. Mecanique 333 (2005).

Résumé

Transfert des outils de Simulation des Grandes Echelles des experts scientifiques vers les bureaux

d’études industriels : un défi pour la communauté INCA. Cet article décrit une méthodologie pour
construire automatiquement des versions de logiciels scientifiques, en particulier des outils de simulation des
grandes échelles pour la combustion, prêtes à être utilisées par des bureaux d’études industriels. Cette approche
est basé sur le ”feature modeling”, une application de la théorie des graphes à la science du développement
informatique. Le besoin de tels outils au sein d’INCA est tout d’abord évalué, et des exemples montrant leur
avantages sont discutés d’après l’expérience d’un projet en cours depuis 2006 appelé C3S entre le groupe SAFRAN

et le CERFACS. En particulier, une telle approche est obligatoire pour mâıtriser la complexité de simulations multi-
modèles, et s’est avérée avantageuse pour la communauté scientifique comme pour la communauté industrielle.
Ce point est mis en évidence par une application au transfert de chaleur dans une turbine à gaz résolue par un
couplage de codes.

Pour citer cet article : A. Dauptain, G. Frichet, C. R. Mecanique 333 (2005).

Key words: Feature Modelling ; Graph Theory ; Multiphysics

Mots-clés : Modélisation par fonctions ; Théorie des graphes ; Multiphysique

Article submitted to 3rd INCA Colloquim

1. Introduction

Large Eddy Simulation (LES) and multiphysics computations are the two methods which are presently
changing research in combustion simulation but also design of combustors in industry. The present paper
discusses an issue which has never been considered before within the INCA community but is now becoming
a first-order priority, according to many present actors working in this field.
LES and multiphysics are extremely sophisticated methods, developed by INCA laboratories for their

own research activities. Because of their success, time has come to transfer these methods towards indus-
trial applications. Running these simulations in laboratories for industry is not sufficient anymore: these
computations must now be performed by industry. At the same time, they must also be transmitted to
new generation of researchers (PhDs and research scientists).
Have we thought enough of what this transmission of knowledge means and how it must be organized?

Even the apparently simple tasks of the necessary improvements for industrial use and the exponential
amount of degrees of freedom for an industrial case are very complex issues which have never been really
addressed within INCA. CERFACS experience was that typically 50 to 80 percent of CPU time invested in
most LES was wasted because users had misjudged the importance of some submodels, or simply entered
wrong parameters in the multiple input files made available to them. More importantly, these CPU time
losses were accompanied by endless discussions and fruitless interactions between academic experts and
industrial users. This was not surprising: LES is a revolutionary method, introduced for combustion only
since 2000, still under development in many laboratories and far from the scientific maturity found in
many other fields. Multiphysics computations are even more complicated. SAFRAN and CERFACS agreed

Figure 1. Snapshot of the C3S 4.1 graphical user interface, which is able to setup AVBP 6.2β simulations, submit and
retrieve the jobs on distant computers (CEA’s Titane, Platine, CINES’s Jade), store and post-process (Ensight, Paraview,
Tecplot) the dataset produced in a traceable and secured project.

that this issue was the most difficult one in the process of making LES or multiphysics a real design tool
for industry and that a key question to tackle these difficulties was the maturation of the AVBP code [7]
co-developed by CERFACS and IFP into an industrial-proof version. In the last four years, CERFACS and

Email addresses: Antoine.Dauptain@cerfacs.fr (A. Dauptain), Guillaume.Frichet@cerfacs.fr (G Frichet),
Florent.Duchaine@cerfacs.fr (F. Duchaine), Eleonore.Riber@cerfacs.fr (E. Riber), Gerard.Dejean@cerfacs.fr (G.
Dejean), Thierry.Poinsot@imft.fr (T. Poinsot).

2

SAFRAN have been involved in a first large-scale effort to build a Graphical User Interface (GUI) allowing
SAFRAN engineers but also new PhDs to work with AVBP. A first version of such an interface for AVBP

called C3S (Châıne de Calcul Combustion Safran) was built and is now used as the standard tool in most
SAFRAN centers but also at CERFACS and other laboratories in Europe (Fig 1).

CERFACS is now involved in a more ambitious project C3SM aiming at the construction of a unified
industrialization platform for INCA which will be able to incorporate other codes. YALES2 [11], and
AVSP [3]. will be the first codes in addition to AVBP included in this tool. The main objectives of C3SM

are:
– Allow non-expert users to choose the level of modelisation adapted to their problems.
– Allow academic experts to give a fast and efficient support to non-expert users.
– Allow academic experts of INCA to access all C3SM tools.
– Allow academic developers of all codes of interest for INCA to build their own industrialized version
(and GUI) in a simple way, whitout specific formation, nor the need to interact with the C3SM

development team.
– Allow systematic verification and bug detection before run time by checking the validity of the
parameters set by the users.

– Provide a total traceability of simulations performed by all users.
The present paper starts with an overview of the C3S project in Section 2. This software is now used

by 150 people in the INCA community and is a good test case for industrialization technologies as well as
an excellent working basis for C3SM. Based on this practical experience, a general model for computation
setup is proposed (Section 3). An implementation is then suggested and main issues are discussed: how can
industrialization work be split, how to build a common language to describe codes, how to build a unified
GUI engine for all applications (Section 4). The proposed methodology is based on recent developments
from science of computer programming (Feature Model diagrams, Model Driven Architecture concept)
which give an answer to all bottlenecks currently identified through the C3S experience. An illustration
of this implementation is commented with the application of the concept to code coupling in Section 5.

2. Industrialization of the LES code AVBP: the C3S project

The C3S project is an industrialization effort started in 2007 and funded by the SAFRAN group. The
objective was to build a GUI to provide to the aeronautic engineers the ability to use the combustion
LES code AVBP. This project is still running successfully: the GUI meets the needs of industrial users
and in 2011, LES of non-reacting/reacting mono-phase/two-phase flows can be set up by the engineers
in Villaroche, Bordes, or Vernon. Several unexpected aspects of the work detailed in this section are of
particular interest.

2.1. The industrialization benefits on CPU/human time waste

Evaluating the human/CPU time wasted along the study of an industrial configuration is subjective.
To give an estimation, a small survey was done on four distinct usual configurations (compressible, multi-
species, reactive) under study at CERFACS between April and July 2011.
The minimum number of parameters to be set in the input files for such simulations exceeds in all

cases 150, most of them corresponding to the specification of boundary conditions. Of course, some of
these parameters can be introduced by cut-and-paste, but this very same operation can introduce errors
by itself. Therefore a quality of 9 successful setups over 10 implies a typing quality of less than 1 error
out of 1500 inputs in the most ideal case.

3

In parallel, the computer support group of CERFACS was investigating the simulation projects stored on
the in-house supercomputers hard-drives : in an AVBP project folder, the ratio of files accessed (i.e. files
produced then copied/compressed/downloaded) versus total files was roughly ranging from 1 to 20%; in an
AVBP project folder managed by C3S, the ratio was always more than 50 and often 100%. This ratio can be
seen as a zero-order approximation of CPU power wasted. Industrialization had a strong positive impact
on this problem by rising the quality of inputs (for example, the values of input files parameters entered
by users are systematically checked and values such as P = −1∅13∅1∅1Pa or T = 3∅OK are refused)
and by introducing a strong traceability between the datasets produced and their inputs. As a result,
non useful LES (runs performed with wrong input parameters or wrong choice of models) have decreased
by a factor larger than two, leading to a significant CPU time reduction. In terms of data storage, a
significantly larger amount of the datasets produced is duly stored and reduced to the pertinent files.

2.2. The hidden activity of refactoring and gluing

Industrializing a code is often associated to the creation of a GUI. As a matter of fact, a significant part
of the work was performed in AVBP itself to increase the robustness of the tools, to ensure the portability
to the various flavors of operating systems, to ensure compatibility of existing models, and above all to
make it GUI-compliant: a GUI controls a software through a dialog, by standardized input/output files
and sound error handling. Ensuring these basic expectations has consumed 80% of the human resources
in the C3S project. As an unexpected benefit, this activity induced an in-depth code refactoring [9] for
the solver, substantially increasing the quality of the code for all users.

2.3. The hidden activity of hotline and support

The hotline task is necessary to support users. From the C3S experience, some characteristic figures
can be outlined from phone records between June 2010 and June 2011. The traffic observed in average
was two calls per day and 1.45 hours of communication per week, with maximal peaks around 5 hours
a week after each release. This demonstrates that the hotline activity took a significant but acceptable
amount of time from the two persons in charge of C3S at CERFACS. As an unexpected benefit, this activity
induced regular contacts and confidence between the partners. This situation eventually created various
new opportunities of (funded) academic/industrial collaborations provided the work was done using the
official GUI.
In traffic engineering, the carried traffic is the average of concurrent calls to a hotline on a period

of time. It is a non dimensional number expressed in erlangs. In the present case, 1.45 hours of traffic
on a weekly basis of 40 hours yields 0.036 Erlang. The escalation process is the decision to re-direct an
incoming call to a specialist. For a smooth operation of the call center, non-escalated calls are kept short,
less than five minutes, and must represent a large majority. In the present case, more than a half of
the calls exceeds five minutes and would probably require an escalation. These two last figures prevent
the hotline outsourcing to a call center: calls too scarse, and half of traffic would need a redirection to
researchers.

2.4. The need of a new method to industrialize solvers

The C3S project is a success in the sense that the initial 2007 strategy -a small group of permanent
researchers gluing an homemade GUI to a LES code- reached the initial 2007 aim -making industrials able
to use by themselves, from their offices, the LES code-. Today, objectives have changed: industrials want
more solvers, more quality in service, more multiphysics available, while academics seek a way to reduce

4

the weight of industrialization, and redirect its manpower and funds to research topics. Consequently, a
new generation of industrialization is needed.

3. The strategy

The previous section highlighted two major constraints: increase the number of industrialized solvers
while reducing the weight of industrialization for research groups. In the C3S project, there is a strong
overlap between the solver team and the industrialization team: new models introduced by Phd’s must
be tested, understood, and generalized by both teams before being compliant to GUI. The overlap is
illustrated in Fig. 2a for the C3S project. The same overlapped organization for multiple codes in Fig. 2b
shows a linear increase of the weight of industrialization, particularly on the industrialization team. Note
that the added weight of code coupling is not taken into account here.
The pivot of the problem is therefore ”Is it possible to separate conveniently the work of solver teams

and industrialization team?”as sketched in Fig. 2c: solver teams reach by themselves the status of a
GUI-compliant code, while industrialization team focuses on the releases of a unified product. The path
towards such an Industrialization Task Separation (ITS) is discussed hereafter.

In
d
.
T
e
a
m

In
d
.
T
e
a
m

In
d
.
T
e
a
m

In
d
.
T
e
a
m

In
d
.
T
e
a
m

A
V
B
P

T
e
a
m

A
V
B
P

T
e
a
m

A
V
B
P

T
e
a
m

Y
A
L
E
S
2

T
e
a
m

Y
A
L
E
S
2

T
e
a
m

A
V
S
P

T
e
a
m

A
V
S
P

T
e
a
m

AVBP

AVBP

AVBP

YALES2

YALES2

AVSP
AVSP

GUI AVBP

GUI AVBP

GUI YALES2

GUI AVSP

Unified
GUI

demonstrator demonstratordemonstrator

generalized generalizedgeneralized

GUI compliant GUI compliantGUI compliant

industrialized industrialized industrialized

a) single overlap b) multiple overlap c) task separation

Figure 2. Strategies of extension of the C3S organization to multiple codes.

Tiwana et al. [12] explain the knowledge overlap by the constant need of both teams to match a foreign
concept: industrialization requirements for solver team, physical model peculiarities for the industrializa-
tion team. This two-way learning is done through an intense team-to-team communication. The creation
of a common language i.e. a standardized description of solvers, is the logical shortcut.
A similar problem is encountered in software engineering with Software Product Lines (SPL) when it

comes to create a collection of similar software systems from a shared set of software assets using a common
means of production. In the SPL context, the common language is called Feature Modelling. Feature
models were first introduced in the Feature-Oriented Domain Analysis (FODA) method by Kang in
1990 [10]. A ”feature” is defined as a ”prominent or distinctive user-visible aspect, quality, or characteristic
of a software system or system” [10]. It is possible to prove that the high complexity of a research software
can be treated as a SPL, and to use the FM concept for its description. To keep the generality of the
discussion, a formal model is needed to represent an arbitrary solver setup, like Kang et al. did for the
1990’s software systems [10].

5

3.1. The graph formulation

From the user point of view, the input parameters of a solver (AVBP, YALES2, AVSP) are clustered in
groups and subgroups, like in Table 1. However, the interdependencies between all parameters do not nec-
essarily respect this hierarchical segregation. Both hierarchical vision and verification of dependencies are
compulsory for an industrialized software: the user will use the first one to navigate through parameters,
and the second one to know the implications of his actions. The best approach to describe hierarchical
vision and verification of dependencies is to use graph theories.
First, a parameter is a variable to specify to the solver. A parameter can have many different natures:

integer, real, boolean, choice, filename, coordinates. The ensemble of parameters, or parametrization
defines a unique instance of the solver.
By definition [6], graphs describe the connectedness of systems and can help to create a formal model

of parameter setups. A general graph is a set V of vertices with a set E of 2-subsets of V called edges. If
the edges have an orientation so that they go from one vertex to another, they are directed edges, and
the graph is a directed graph. In the present context, the vertices are linked to the parameters, and the
directed edges to their dependencies. More precisely, each vertex includes a boolean information about
the validity of the parameter. If the validity of parameter B needs to be tested when parameter A changes,
the associated graph is A → B. To ease the discussion, in the relation A → B, A is the child of B and B

is the father of A. Furthermore, validity is recessive, i.e. if A1 → B and A2 → B then B can be true only
if both A1 and A2 are true. In other words, a parameter can be valid only if all its children parameters
are valid.
The parametrization of an arbitrary CFD solver is shown as a directed graph in Fig. 3, taking into

account the hierarchical dependencies only. In the hierarchical graph of Fig. 3, one can show that the
n vertices are connected by exactly n − 1 edges by construction, since all parameters are grafted either
to the root vertex (CFD solver) or to a pre-existing vertex. By theorem [6] this graph is a tree, i.e. a
connected graph without circuits. This particular graph allows a very efficient data storage [2] used by
all filesystem browsers.
A second graph sketched in Fig. 4 includes the cross-dependencies between parameters of different

kinds. By construction, the n vertices are connected by more than n − 1 edges, excluding this graph
from the tree family [6]. The descriptions of coupled parameters, like the choice between a tetrahedron-
based numerical scheme and a hexahedron-based one are represented with a circuit (cf. example mesh

file ⇋ scheme of Fig. 4). 1 . These circuits rise the complexity of a graph.
The graph theory yields two conclusions:

(i) The hierarchical part of the setup, or ”the way the user comprehend the setup”, can be implicitly
modeled by the structure of a directed tree.

(ii) The cross-dependencies can link any parameters, and cannot be implicitly modeled by the structure
of a directed tree. If the tree structure is used, these dependencies must be explicitly declared.

Note that the implicit modeling of hierarchy makes native the ”error tracking”: according to the graph
of Fig. 3, setting the integer parameter ”Dimensions” to 1.3 makes the vertex ”false”. The path:

Dimensions→Domain→CFD solver

is recursively set to false. The user can quickly track down the parameter blocking the whole setup using
this highlighted path. This process is illustrated in Fig.5.
The tree model considered until now is static, in the sense that no part of the graph can appear or

vanish. The actual setup of a solver is more dynamic: the number of boundaries is not known in advance,

1. Coupled parameters are common in scientific solvers because they gather the different aspects of the same approach.
For example, the wall modeling and the sub-grid scale modeling is a reccurent couple in Large Eddy Simulation solvers.

6

ts

CFD solver

Domain Algorithms Equations Boundaries

Mesh file

Dimensions

Boundaries

Scheme

Art. Visc.

Euler/N.S.

Two phase

Gas params

Boundary 1

Boundary 2

Boundary 3

Boundary 4

Figure 3. CFD solver information shown as a directed
graph, showing only hierarchical dependencies of Ta-
ble 1. 17 vertices for 16 edges.

CFD solver

Domain Algorithms Equations Boundaries

Mesh file

Dimensions

Boundaries

Scheme

Art. Visc.

Euler/N.S.

Two phase

Gas params

Boundary 1

Boundary 2

Boundary 3

Boundary 4

Figure 4. CFD solver information stored in as a directed
graph including the cross-dependencies of Table 1. 17
vertices for 35 edges.

valid

not valid

Figure 5. Path toward a invalid parameter using the
directed tree structure. A non-validity is propagated to
the ancestors. The search for the non-valid parameter
among 27 possibilities is highlighted in 4 steps from the
root.

Equations

Euler/N.S.

Two-phase

Eulerian

Approach

Lagrangian

mean diam.

other

particles nb.

other

Drag

Evaporation

exclusive

optional

multiple

bnd.1

bnd.2

bnd.3

bnd.4

bnd.n

CFD solver

Boundaries

Figure 6. Three dynamic vertices: a multi-
ple vertex for the boundaries, an optional
vertex for single/two phase computations,
and an exclusive vertex whose children are
mutually exclusive.

some equations are optional, and some are mutually exclusive. Consequently, a supplementary property
must be added to some vertices in order to allow the variety of setups, illustrated in Fig. 6. The exact
property to add is discussed in the next section.

3.2. The Feature Modeling

The requirements or research softwares being known by the graph theory, are they compatible with
the FM approach? Can a research software be regarded as Software Product Line (SPL) , i.e. a family of
related programs. The basic Feature Model notation includes relationships between a parent feature and
its child features:
– Mandatory – child feature is required. Can be extended to multiple.

7

– Optional – child feature is optional.
– Or – one or more sub-features must be selected.
– Alternative (xor) – only one of the sub-features must be selected

In addition to the parental relationships between features, cross-tree constraints are allowed. The most
common are:
– A requires B – The selection of A in a product implies the selection of B.
– A excludes B – A and B cannot be part of the same product.

This basic model can be extended [8] by describing multiplicities of some mandatory (resp. optional)
features: mandatory multiple means A must have 1 or more B children (resp. optional multiple means A
can have 0, 1 or more B children). These six notations on a directed tree are sufficient to describe the
parametrization of a research software. The parametrization of the LES code AVBP is showed thought a
Feature Modeling diagram in Fig. 7. For the sake of clarity, only five out of the sixty boundary conditions
available in AVBP 6.2β and only major parameters are shown.

AVBP

Eqs.

Algo.

Domain

Boundaries Bnd. Cond.

Initial field

Ignition model
gas out

energy deposition

Inf. Fast.

Thickened

Laminar

Combustion Thick. Factor
Max.Reac.Rate

Efficiency

Two-phase flow Evaporation

Gravity

Nb. particles
diam.

R.U.M.

Eulerian

Lagrangianspecies

O2

H2

N2

CH4

CO2

H2O

Euler flow

Navier-Stokes flow

Turb. SGS
Smagorinsky

Wale

mesh

[1,∞]

Art. Vis.

Lax Wendroff

Taylor Galerkin

2nd order

4th order

nb. partitions

nb. partitions

queue

req. timeremote

local

Wall

outlet

inlet

Non-slipping

Slipping

Law of the wall

pressure

Velocity
Temperature

Species composition
Profile

Laminar
Turbulent

Flat

liquid velocity

liquid compo
liquid temperature

Mandatory

Optional

Or

Alternative (XOr)

Requires

Excludes

Figure 7. Feature Diagram of the LES code AVBP 6.2β using the notation of Kang [10]. The diagram is simplified: more
than sixty boundary conditions are available, and only the major model parameters are shown.

4. Practical implementation

On the way to simplify the communication between solvers teams and industrialization teams, Boucher
et al. [4] suggests a text-based approach to describe the softwares and shows an application of the concept
to a family of printer drivers. This reduces the knowledge overlap to an exchange of text files. As the
language needed to model research software will be used only reluctantly by solver teams, there is a strong
constraint: this language must be ”research-oriented” i.e. as explicit as possible, handled by the classical
academic tools (editing with a vi/emacs/xedit console, grafting/pruning with a console cp/mv/rm or a

8

browser, management with a CVS/SVN-like file manager). The perception of this language by researchers
is the cardinal point which will condition the ease of solver teams to reach the GUI-compliant state.
A Domain Specific Language is therefore the best option, with a tree-shaped data structure, and the six

notations of FM to enrich the nodes. The present section explains why an eXtensive Markup Language
(XML) is a good candidate to this purpose, what vocabulary is necessary for markups, and why a scattered
cloud of XML files is more suited to the present context. Afterwards, a quick overview on the GUI engine
completes the picture of the methodology.

4.1. XML files with explicit Feature Model notations

XML is a set of rules [5] to write data structures. Each file is composed of structured elements. An
element begins with a start-tag and end with an end-tag. Attributes can be attached to start-tags to
describe the element and content is what is between the start-tag and the end-tag. If no content is
written, the element can just be an only tag named empty-element tag. Elements are nested into each
other so that an element has always one father (except the first one which is usually the document) and
can have children. The directed-tree structure is therefore implicitly described by any XML file, which is
illustrated in Fig. 8.

<root>name

<param>node 1</param>

<param>node 2<subparam>subnode 1</subparam></param>

</root>

root node declaration
element node declaration

child node declaration

name (root)

node 1 (param) node 2 (param)

subnode 1 (subparam)

Figure 8. Simple example of XML-like file and its associated directed tree

The introduction of FM notations in the XML structure is a matter of vocabulary. A possible example is
shown in Fig. 9. The six notations (mandatory /optional, or/Xor, require/exclude) are explicitly shown.
In this example, both CFD and boundaries conditions are mandatory, but several nodes ”boundary
conditions” can exists. A verbose mode supported only in Euler resolution is secured by the required
parameter. One can note that any choice (or/Xor) implies the creation of an intermediate node, which
helps to store the choice result.

<model name=" M y S o l v e r " >

<param name=" CFL " type=" m a n d a t o r y " \>
<param name=" v e r b o s e " type =" o p t i o n a l " r e qu i r e=" e q u a t i o n s E u l e r " \>
<param name=" B . C . " type=" m a n d a t o r y m u l t i p l e " \>
<param name=" p a s s i v e s c a l a r " type=" o p t i o n a l m u l t i p l e " exclude=" s p e c i e s e mp t y "\>
<param name=" s p e c i e s " type=" or " >

<cho i ce name=" h y d r o g e n "\>
<cho i ce name=" o x y g e n "\>
<cho i ce name=" w a t e r v a p o r "\>
<cho i ce name=" n i t r o g e n "\>

</param>

<param name=" e q u a t i o n s " type=" Xor " >

<cho i ce name=" E u l e r "\>
<cho i ce name=" Navier - S t o k e s "\>

</param>

<\model>

Figure 9. Example of an XML file with the Feature Mod-
eling (FM) notations

NS Euler

Mysolver

CFL
Bndy. Cond.

Verbosity
Passive scalars

Species

H2 O2 H2O N2

equations
[1,∞] [0,∞]

require
exclude

Figure 10. FM diagram associated to the XML-FM file
of Fig. 9

9

4.2. Scattering files

The description of a full solver in its entire complexity in one file is possible but heavy. A alternative is
scattering the solver description into smaller files. As files are stored in a computer within an arborescence,
the tree structure of the arborescence can be used for in the description of the global tree using the
”grafting” operation. The advantage of storing the description of each model into a specific file is twofold:

(i) Like any source code subroutine in academia, these small files can be edited with lightweight editors
(e.g. vi), managed by release managers (e.g. SVN/ CVS), and installed/uninstalled from a console or
a file browser. Adding simply one file to the arborescence gives more autonomy in a trial-and-error
attempt. In all aspects, researchers can interact with these files like they do with source code.

(ii) Contractually, each of these files becomes the deliverable entities associated to the industrialization
of the associated model. Each file has its own traceability, and its own confidentiality properties.
The deliverable is paid to the solver team, redirecting the industrialization funding towards the
scientific team.

4.3. GUI engine using a Model Driven Architecture

The remaining question is wether it is possible to construct a generic GUI engine based upon an
arborescence of XML-FM files, which is a classical problem in software engineering addressed by the
Model-Driven Architecture (MDA) approach, launched by the Object Management Group (OMG) in
2001. First the MDA approach defines system functionality using a platform-independent model (PIM)
with an appropriate domain-specific language (DSL)-in the present case the cloud of XML-FM files- .
Then, given a platform definition model the PIM is translated to one or more platform-specific models
that computers can run.
Following this concept, the GUI engine is straightforward. Its structure is given in Fig. 11. First a

parser checks for correct syntax and builds a oriented-tree data structure with the six FM components.
A widget generator walks through the tree and creates a GUI widget adapted to each feature: an entry
for a real, some radiobuttons for a choice, etc... Separately an event generator create the reactions of the
software to the user sollicitations: making a certain choice requires the update of a certain amount of
widgets. The combination of widgets and events is a GUI.

XML files

parser

tree model

Widget gen. Event gen.

GUI

Controller Analyzer
Parametrization rules

Template files

Solver running on computer

Project files

Analysis

Datasets

Figure 11. XML-based GUI engine

10

Once the parametrization is done, one action in the GUI asks to the controller to prepare the input
files of the selected solver thanks to some parametrization rules (grammar of input files) and/or template
files (pre-existing files with replaceable keywords) and submit the job to a computer. An other action
in the GUI asks to the analyzer the monitoring of jobs, the retrieval of datasets, or more in-depth post-
processing.

5. Toward multi-physics applications

A multi-physics application can be addressed either by a multi-physics solver (monolithic approach) or
by several dedicated solvers that exchange boundary conditions (coupled approach). Industrialization of
a monolithic approach is straightforward with the present methodology, but a coupled approach rises new
issues. Conjugate Heat Transfer (CHT) problems treated by coupled legacy codes are a good illustration
of these issues. This solution has the advantage of using existing state-of-the-art codes to solve fluid and
solid equations and of being able to exchange one solver with another easily. The main drawback of this
coupling methodology is that an adapted CHT framework is requested for the simulations especially on
parallel machines. The performances of such a coupling framework are linked to (1) the strategy to couple
the solvers in an accurate and stable fashion and to (2) the exchange of information between the solvers
in an efficient and scalable fashion when using a large number of processors.
Point (1) imposes to be able to extract and to impose information in the legacy codes during the

computation at given times. This work is done by collection of empty routines, or User Defined Functions,
i.e. called at strategic places. The success of point (2) relies on a coupling library able to:
– efficiently connect coupled geometric interfaces (meshes or sub part of meshes) of parallel solvers
distributed on a large number of processors,

– produce high quality interpolations of exchanged data.
The OpenPALM coupler [1] co-developed by CERFACS and ONERA tackles these issues. It is used to control
AVBP for the resolution of the fluid part and AVTP 2 for the resolution of the conduction in solids. In
addition to the AVBP and AVTP parameters, a set of coupling parameters has to be specified : the frequency
of meeting points for data exchange, the number of meeting points, the location where information need
to be exchanged, the type of information to exchange and some parameters for the interpolation.
The present industrialization methodology can be extended to the coupling of legacy code by grafting

the solvers tree to an application-specific coupling tree, as illustrated in Fig. 12. Note that some exclu-
sion/requirements will be necessary: impose temperature from fluid to solid and also temperature from
solid to fluid for example will lead to exchange always the same quantity and ... no convergence.

6. conclusion

After a case study about a five year experience on a LES solver industrialization, a new framework for
the industrialization of scientific softwares is developed. Elements of graph theory show how a massive
part of dependencies between parameters can be implicitly imbedded in the data structure. A cloud
of XML file is the basis of a domain specific language directly accessible to researchers. The general
algorithm of GUI engine taking advantage of this DSL is depicted. The application of the concept of a
LES solver/Thermal solver coupling is illustrated.

2. Parallel thermal solver developed at CERFACS.

11

Coupling

SolversCoupling params

Interpolation

Duration

other

CFD solver Thermal solver

Figure 12. Grafting operation for a CHT coupling setup: a CFD solver coupled with a thermal solver

References

[1] A. Thévenin A. Piacentini, T. Morel and F. Duchaine. O-palm : An open source dynamic parallel coupler. In IV
International Conference on Computational Methods for Coupled Problems in Science and Engineering - Coupled
Problems 2011, Kos Island, Greece, June 2011.

[2] A.V. Aho, J.E. Hopcroft, and J. Ullman. Data structures and algorithms. Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA, 1983.

[3] L. Benoit. Prédictions des instabilités thermoacoustiques dans les turbines à gaz - TH/CFD/05/41. PhD thesis,
Université Montpellier II - DOCTORALE ISS: Spécialité Mathématiques et Modélisation, 2005.

[4] Q. Boucher, A. Classen, P. Faber, and P. Heymans. Introducing tvl, a text-based feature modelling language. In
Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems (VaMoS’10),
Linz, Austria, January, pages 27–29.

[5] T. Bray, J. Paoli, and CM Sperberg-McQueen. Extensible markup language (xml) 1.0. 1999.

[6] P.J. Cameron. Combinatorics: topics, techniques, algorithms. Cambridge Univ Pr, 1994.

[7] O. Colin and M. Rudgyard. Development of high-order taylor-galerkin schemes for les. Journal of Computational
Physics, 162(2):338–371, 2000.

[8] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature models. Software Product Lines, pages
162–164, 2004.

[9] M. Fowler and K. Beck. Refactoring: improving the design of existing code. Addison-Wesley Professional, 1999.

[10] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. Feature-oriented domain analysis feasibility study.
Software Engineering Institute, Pittsburgh CMU/SEI-90-TR-21, 1990.

[11] V. Moureau, P. Domingo, and L. Vervisch. From large-eddy simulation to direct numerical simulation of a lean premixed
swirl flame: Filtered laminar flame-pdf modeling. Combustion and Flame, 2010.

[12] A. Tiwana. Beyond the black box: knowledge overlaps in software outsourcing. Software, IEEE, 21(5):51–58, 2004.

Description of ... Physical problem Solver information Cross Dependencies

Domain Spatial location Mesh Algorithm

Equations Physical phenomenons Models parameters none

Boundary Frontiers definition Boundary parameters Domain, Equations

Algorithm - Numerical parameters Domain, Equations

Table 1
Repartition of parameters in four arbitrary groups, from the user point of view

12

