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Abstract

A systematic method to define progress variables for chemistry tabulation is
presented. The method is mathematically based on the Principal Component
Analysis (PCA) of the mass fraction of species in the composition space.
The present approach is analogous to eigenvalue analysis of Intrinsic Low
Dimensional Manifolds. Thus, the present study provides a similar strong
mathematical formulation for flamelet-based tabulation methods. Moreover,
the new method is designed to provide the minimum number of linearly
independent progress variables, for a user-prescribed desirable accuracy, in
representing the thermo-chemical states of interest. Hence, it is suggested
that the flamelet-based tabulations created with the new approach be called
Intrinsically Low-Dimensional, Flamelet Generated Manifolds (IL-FGM).

Keywords: Chemistry Tabulation, Flamelet Methods, Flamelet Generated
Manifold, Turbulent Combustion

1. Introduction

Numerical simulations of turbulent reacting flows with a full description
of complex chemistry remain prohibitively expensive due to computational
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resources limitations. Several methods have been proposed to address this
problem. These approaches include reducing the chemical scheme in intrinsic
low dimensional manifolds(ILDM) [1, 2], or using flamelet-based approaches
such as the flamelet-progress variable (FPV) [3], flame prolongation of ILDM
(FPI) [4], and flamelet generated manifolds (FGM) [5].

The basic idea of the ILDM method is to describe the complex chemistry
with an attracting, low dimensional, manifold in the composition space. This
manifold is identified through an eigenvalue analysis of the chemical scheme.
Although ILDM method has a strong mathematical foundation, its accu-
racy deteriorates in low temperature regions. This is to due the fact that
the transport of species through convection and diffusion is neglected in the
ILDM formulation, while these phenomena become important in the dynam-
ics of low temperature regions.

To overcome this limitation, flamelet-based approaches use the numerical
solution of one-dimensional premixed flames or nonpremixed flamelet equa-
tions to construct the look-up tables which describe the chemistry. In these
methods, the thermo-chemical states of interest are calculated and tabulated,
prior to the simulation, as functions of a set of independent variables, referred
to as progress variables.

The flamelet table can be mathematically represented as

Ψ = F (c1, c2, · · · , cn) = F (c) , (1)

where Ψ denotes the vector of all thermo-chemical properties of interest, and
c represents the vector of progress variables. The progress variables should
be defined such that all thermo-chemical states of interest can be uniquely
identified. Moreover, it is desirable to keep the number of progress variables,
and hence, the table dimensions at minimum to avoid prohibitive memory
requirements.

So far, the definition of progress variables has been somewhat arbitrary
which results in a weaker mathematical foundation for FPI and FGM meth-
ods [6]. The progress variable has been conventionally defined using the
mass fraction of major species such as CO2, CO, and H2O. However, such
definitions usually lead to inaccurate results for rich mixtures, or heavy hy-
drocarbon fuels as they decompose before significant heat release. The am-
biguity in defining progress variables can become problematic as the number
of progress variables in a tabulation increases. Ad-hoc progress variables
might not necessarily be linearly independent to form an orthogonal base in
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the composition space. This can result in loss of accuracy in identifying a
specific thermo-chemical state in the tabulation.

In this paper, we propose a systematic method to define the progress
variables for FGM and FPI. The method is mathematically based on the
Principal Component Analysis (PCA) of the composition space, which is
itself constructed from one-dimensional flame simulations. Also known as
Proper Orthogonal Decomposition (POD),the Karhunen-Loev́e Decomposi-
tion, and the Hotelling transform, PCA is widely used for reduced-order
modeling, low-dimensional representations of phenomena, and data reduc-
tion [7]. The application of PCA in the present study is analogous to the
eigenvalue analysis of ILDM, providing FGM and FPI with a similar strong
mathematical formulation.

Using PCA, the proposed approach is designed to provide the mini-
mum number of linearly independent progress variables in representing the
thermo-chemical states of interest. Hence, it is suggested that the flamelet-
based tabulations created with the new approach be called Intrinsically Low-
Dimensional, Flamelet Generated Manifolds (IL-FGM).

The present paper is organized as follows. Some background on the Prin-
cipal Component Analysis and the Singular Value Decomposition (SVD) is
reviewed in Sec. 2. The new approach to define progress variable and con-
structing IL-FGMs are presented in Sec. 3. Some numerical examples are
provided in Sec. 4. Conclusions are drawn in Sec. 5

2. Principal Component Analysis

2.1. Background

Consider a set of n measurements of a physical phenomenon. Each mea-
surement yields a set of m variables which describe the physical state of the
system and can be represented by a m × 1 vector x. In the present study,
the vector x consists of the mass fraction of all species involved in the given
chemical mechanism,

x = [Y1 Y2 · · · Ym]T , (2)

where Yi represents the mass fraction of the species i, and m is the number
of species in the mechanism. The data obtained from the n measurements
can be represented by a m× n matrix,

X = [x1 x2 · · · xn] . (3)
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Each measurement, xi, denotes a point in the m-dimensional composition
space. The matrix X represents a cloud of point on a manifold which specifies
different states of the system.

The goal of PCA is to find the optimal linear combination of original
bases to minimize the redundancy, and represent data set with a reduced
number of dimensions. Hence, PCA tries to achive this goal by finding the
principal directions in the data set, along which maximum variations of data
is expected.

2.2. Identification of the principal directions

Let X and C be m × n matrices of the original date set, and its pro-
jection along the principal directions, respectively. The goal is to find an
m×m-transformation matrix W that relates X and C through the following
relation:

C = W X . (4)

Each component of C is a dot-product of vector xi with the corresponding
row of W. In other words, the matrix C is the projection of the original data
set X on the new basis defined by row of W (i.e. wi’s). It should be noted
that PCA requires that wi vectors be orthonormal.

To have the optimal representation of the original data set, it is expected
that C have minimum redundancy, and the new bases be linearly independent
from each other. This is achieved by defining W such that the covariance
matrix,

CC =
1

n
CCT , (5)

is diagonal. The covariance matrix of the transformed data set, CC, can be
written in terms of the covariance matrix of the original data set, CX, as
follows:

CC =
1

n
CCT

=
1

n
(WX) (WX)T

= W

(
1

n
XXT

)
WT

= WCXWT . (6)

This form will be used later in Sec. 2.3 to find the matrix W through the
Singular Value Decomposition.
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2.3. Singular Value Decomposition and Principal Component Analysis
A Singular Value Decomposition (SVD) of a m × n matrix X is defined

as [8]:
X = USVT , (7)

where U and V are m × m and n × n orthonormal matrices, respectively.
The matrix S is an m × n matrix with all elements equal to zero except on
the diagonal. The diagonal elements of S are called the singular values of
X, and are in descending order. The covariance matrix of X can then be
expanded to yield

CX =
1

n
XXT

=
1

n

(
USVT

) (
USVT

)T
=

1

n
USVT VSTUT

=
1

n
U SST UT . (8)

Equation (8) can be further simplified to give

UTCXU =
1

n
SST , (9)

which reveals that UTCXU is a diagonal matrix. If W is chosen to be UT ,
eq. (6) and (9) can be combined to yield

CC = WCXWT = UTCXU =
1

n
SST . (10)

Since CC = 1
n
SST is diagonal, it is concluded that columns of U are the

principal components of the data set X.
Another important property of the SVD is that

X̃k
m×n = Um×kSk×kV

T
n×k k < min(m,n) , (11)

is the closest approximation of X in the least square sense for a k-dimensional
subspace. The matrix X̃k is commonly referred to as the approximation of
rank k to X. Matrices Um×k, and Vn×k are formed from the first k columns
of Um×m and Vn×n, respectively; similarly, the matrix Sk×k is a diagonal
matrix made from the first k singular values of X.

Therefore, SVD provides not only just a new set of basis to represent the
data, but also the best set of base vectors to approximate a given data set
with the fewest possible dimensions.
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Figure 1: A schematic profile of the mass fraction of a species in a one-dimensional freely
propagating flame. The flame is sampled at n stations in the physical domain to construct
the data set.

3. Systematic Definition of Progress Variables, and Intrinsically
Low-Dimensional, Flamelet Generated Manifolds

Consider the numerical solution of a freely propagating flame as illus-
trated in Fig. 1. Such solutions are tabulated in FGM and FPI. Considering
a chemical mechanism with m species, the one-dimensional flame is sampled
at n stations to form a m × n data set in the form of matrix X1, which
represents the flamelet manifold in the composition space Rm.

Rather than using an ad-hoc definition, it is suggested that progress vari-
ables be defined as linear combinations of species mass fractions,

ci =
m∑
j=1

wijYj , (12)

such that they form the principal directions of the flamelet manifold in the
composition space. As discussed in Sec. 2, the principal directions yield the
best representation of a data set with minimum number of dimensions. The
magnitude of the singular values of matrix X indicates how important the

1The dataset X can also include samples from simulations with variable equivalence
ratio, inlet temperature, or strain rate depending on the intended application.
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corresponding progress variable is in the tabulation, and how many progress
variables are needed. This results in a systematic way of defining the progress
variables for Intrinsically Low-dimensional, Flamelet-Generated Manifolds
(IL-FGM). Equation (12) can be recast in the matrix form to yield eq. (4).
Thus, the weighting coefficients wij’s can be obtained from the SVD of matrix
X as discussed in Sec. 2.3.

4. Numerical Examples

In this section, the application of IL-FGM is demonstrated for mono-
dimensional and multi-dimensional flamelets. It is important to mention
that the additional cost of PCA was found to be quite small, a fraction of a
second, compared to the computational time that was required to simulate
each flamelet.

4.1. Flamelets with a single-progress variable

Two flamelets, each generated from the numerical solution of freely prop-
agating flame in a CH4-air mixture, were considered as the first test cases.
The GRI-30 mechanism [9] was used to describe the complex chemistry. The
inlet condition resh gases were set to P = 1 [atm] and T = 473 [K]. The two
flamelets were generated for equivalence ratios φ = 0.85 and φ = 1.9, respec-
tively. Given the fact that each flamelet consists of the data from a single
equivalence ratio calculation, it can be fully described by a single progress
variable.

The weight coefficients to define the progress variable for φ = 0.85 and
φ = 1.9, are presented in Table 1 and 2, respectively. The method automat-
ically gives significant weight to the major reactants (O2, CH4), and major
products (CO2, H2O). It is interesting to note that CO received a smaller
weight for the fuel-lean flamelet than that for the fuel-rich one. This intrinsic
ranking of important species is a significant feature of the proposed method.

To further verify that obtained progress variables can uniquely describe
the flamelets, a different flame at φ = 0.85 and similar inlet conditions
was solved, with the computational domain length and the flame position
changed. Figure 2 shows the spatial distribution of the temperature and
some species mass fractions. Excellent agreement is observed between the
numerical solution of the new flame with complex chemistry, and the data
obtained from the previously prepared flamelet. Figure 4 compares the same
results in the progress variable space.
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Figure 3 shows the results of a similar test for a flame at φ = 1.90. The
results obtained from a flamelet, using a conventional definition of progress
variable, are also shown for comparision. As it can be observed, the sys-
tematicly defined progress vairable yeilded more accurate results than the
arbitrarily defined one.

4.2. Flamelets with multi-progress variables

In many practical problems, the flamelet library may include several di-
mensions. For instance, the flamelet library may include solutions for various
equivalence ratios and strain rates (c.f. Nguyen et al. [10]), or even two-phase
flames. In such problems, the thermo-chemistry can still be tabulated in
terms of several progress variables which are defined from linear combination
of species mass fractions. This is demonstrated by considering a flamelet li-
brary with various equivalence ratios. It is important to note that no a-priori
knowledge of chemistry or flame structure is required.

The flamelet library was obtained from the solutions of a freely propagat-
ing flame in CH4-air mixture at φ ∈ {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}.
The inlet conditions for fresh gases were set to P = 1 [atm] and T = 473 [K].

Figure 5 shows the temperature distribution of the flamelet library as a
function of the two progress variables, c1 and c2. The weight coefficients for
the definition of c1 and c2 are provided in tables 3 and 4, respectively. A De-
launay triangulation of the data set was constructed using the Computational
Geometry Algorithms Library [11] for the linear interpolations.

Figure 6 shows a comparison between the numerical simulation of flame
at φ = 1.15 and the interpolated data from the flamelet library. Both sets of
results are in excellent agreement for temperature, and major species such as
CO and CO2. The results for minor species such as OH are not as accurate,
but in overall good agreement. The results can be further improved through
the use of higher order interpolations, and an increased number of flamelet
solutions to expand the flamelet library.

5. Conclusion

A systematic method to define progress variables for chemistry tabula-
tion is presented. The method is mathematically based on the the Principal
Component Analysis (PCA) of the composition space. The present study
provides a similar strong mathematical formulation for flamelet-based tabu-
lation methods. Moreover, the new method provides the minimum number
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of linearly independent progress variables, for a user-prescribed desirable ac-
curacy, in representing the thermo-chemical states of interest. Hence, it is
suggested that the flamelet-based tabulations created with the new approach
be called Intrinsically Low-Dimensional, Flamelet Generated Manifolds (IL-
FGM).

Some numerical examples were presented. Both mono-dimensional and
multi-dimensional flamelet libraries were considered. It was demonstrated
that the new method automatically identifies the species of significance im-
portance, and takes them into account accordingly in the definition of the
progress variables. Very good agreements between the flamelet-retrieved re-
sults and those obtained from the numerical simulation of freely propagating
flames confirmed the effectiveness of the present approach.

The application of the present approach to simulate turbulent combustion
in real combustors, with partially premixed and non-adiabatic regimes, will
be studied in future works.
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H2 H O O2 OH
0.0001 0.0004 0.0060 -0.7637 0.0166

H2O HO2 H2O2 C CH
0.4140 -0.0002 0.0000 0.0000 0.0000

CH2 CH(S) CH3 CH4 CO
0.0000 0.0000 0.0002 -0.1989 0.0686

CO2 HCO CH2O CH2OH CH3O
0.4480 0.0000 -0.0008 0.0000 -0.0000

CH3OH C2H C2H2 C2H3 C2H4
-0.0002 0.0000 0.0000 0.0000 -0.0001

C2H5 C2H6 HCCO CH2CO HCCOH
0.0000 -0.0007 0.0000 0.0000 0.0000

N NH NH2 NH3 NNH
0.0000 0.0000 0.0000 0.0000 0.0000

NO NO2 N2O HNO CN
0.0002 -0.0000 0.0000 0.0000 0.0000

HCN H2CN HCNN HCNO HOCN
0.0000 0.0000 0.0000 0.0000 0.0000

HNCO NCO N2 AR C3H7
0.0000 0.0000 0.0106 0.0000 -0.0000

C3H8 CH2CHO CH3CHO
0.0000 0.0000 0.0000

Table 1: The weight coefficients of each species, as obtained from PCA, to define the
progress variable for a premixed CH4-air flame at φ = 0.85. The results are shown up to
the fourth decimal.
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H2 H O O2 OH
0.0272 0.0000 0.0000 -0.7328 0.0001

H2O HO2 H2O2 C CH
0.4320 -0.0000 -0.0000 0.0000 0.0000

CH2 CH(S) CH3 CH4 CO
0.0000 0.0000 0.0015 -0.3239 0.3706

CO2 HCO CH2O CH2OH CH3O
0.3558 0.0000 -0.0006 0.0000 -0.0000

CH3OH C2H C2H2 C2H3 C2H4
-0.0002 0.0000 0.0395 0.0000 0.0017

C2H5 C2H6 HCCO CH2CO HCCOH
0.0000 -0.0004 0.0000 0.0008 0.0000

N NH NH2 NH3 NNH
0.0000 0.0000 0.0000 0.0000 0.0000

NO NO2 N2O HNO CN
0.0000 0.0000 0.0000 0.0000 0.0000

HCN H2CN HCNN HCNO HOCN
0.0000 0.0000 0.000 0.0000 0.0000

HNCO NCO N2 AR C3H7
0.0000 0.0000 0.0067 0.0000 0.0000

C3H8 CH2CHO CH3CHO
0.0000 0.0000 0.0000

Table 2: The weight coefficients of each species, as obtained from PCA, to define the
progress variable for a premixed CH4-air flame at φ = 1.9. The results are shown up to
the fourth decimal.
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Figure 2: The structure of a freely propagating flame in CH4-air mixture at φ = 0.85,
T0 = 473 [K], and P = 1 [atm] in the physical space; solid line: physical space solution;
symbols: solution retrieved from the previously generated flamelet table. (a): temperature;
(b): CO2 mass fraction; (c): CO mass fraction; (d): OH mass fraction.
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Figure 3: The structure of a freely propagating flame in CH4-air mixture at φ = 1.9,
T0 = 473 [K], and P = 1 [atm] in the physical space; solid line: physical space solution;
circles: solution retrieved from the previously generated flamelet table using the new
definition of progress variable; triangles: solution retrieved from the previously generated
flamelet table using c = YCO2 + YCO + YH2O + YH2. (a): temperature; (b): CO2 mass
fraction; (c): CO mass fraction; (d): OH mass fraction.
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Figure 4: The solution of the flame, shown in Fig. 2 versus the progress variable; solid
line: physical space solution; symbols: flamelet table. (a): temperature; (b): CO2 mass
fracion; (c): CO mass fracion; (d): OH mass fraction.
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Figure 5: The temperature distribution in the progress variable space; solid lines: physical
space solution for various equivalence ratios ; symbols: interpolated values for equivalence
ratio φ = 1.15.
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H2 H O O2 OH
0.0066 0.0006 0.0030 -0.7767 0.0108

H2O HO2 H2O2 C CH
0.4345 -0.0002 -0.0000 0.0000 0.0000

CH2 CH(S) CH3 CH4 CO
0.0000 0.0000 0.0008 -0.2191 0.1945

CO2 HCO CH2O CH2OH CH3O
0.3491 0.0000 -0.0009 0.0000 0.0000

CH3OH C2H C2H2 C2H3 C2H4
-0.0002 0.0000 0.0011 0.0000 -0.0001

C2H5 C2H6 HCCO CH2CO HCCOH
0.0000 -0.0010 0.0000 0.0001 0.0000

N NH NH2 NH3 NNH
0.0000 0.0000 0.0000 0.0000 0.0000

NO NO2 N2O HNO CN
0.0003 0.0000 0.0000 0.0000 0.0000

HCN H2CN HCNN HCNO HOCN
0.0000 0.0000 0.0000 0.0000 0.0000

HNCO NCO N2 AR C3H7
0.0000 0.0000 -0.0031 -0.0000 0.0000

C3H8 CH2CHO CH3CHO
0.0000 0.0000 0.0000

Table 3: The weight coefficients of each species, as obtained from PCA, to define the first
progress variable, c1, for a premixed CH4-air flame at φ ∈ [0.6, 1.5]. The results are shown
up to the fourth decimal.
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H2 H O O2 OH
0.0486 0.0002 -0.0083 -0.0785 -0.0252

H2O HO2 H2O2 C CH
0.1581 0.0006 0.0000 0.0000 0.0000

CH2 CH(S) CH3 CH4 CO
0.0001 0.0000 0.0093 0.1589 0.6553

CO2 HCO CH2O CH2OH CH3O
-0.6395 0.0001 0.0066 0.0000 0.0000

CH3OH C2H C2H2 C2H3 C2H4
0.0009 0.0000 0.0105 0.0001 0.0096

C2H5 C2H6 HCCO CH2CO HCCOH
0.0000 0.0077 0.0002 0.0028 0.0000

N NH NH2 NH3 NNH
-0.0001 0.0000 0.0000 0.0000 0.0000

NO NO2 N2O HNO CN
0.0003 0.0000 0.0000 0.0000 0.0000

HCN H2CN HCNN HCNO HOCN
0.0000 0.0000 0.0000 0.0000 0.0000

HNCO NCO N2 AR C3H7
0.0003 0.0000 -0.3190 0.0000 0.0000

C3H8 CH2CHO CH3CHO
0.0002 0.0000 0.0003

Table 4: The weight coefficients of each species, as obtained from PCA, to define the
second progress variable, c2, for a premixed CH4-air flame at φ ∈ [0.6, 1.5]. The results
are shown up to the fourth decimal.
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Figure 6: The structure of a freely propagating flame in CH4-air mixture at φ = 1.15,
T0 = 473 [K], and P = 1 [atm] in the physical space; solid line: physical space solution;
symbols: solution retrieved from the previously generated flamelet table. (a): temperature;
(b): CO2 mass fraction; (c): CO mass fraction; (d): OH mass fraction.
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