

High Fidelity Simulations of Combustion Turbine Systems, Niskayuna, NY, June 25th – 26th , 2012

imagination at work

CERFACS State-of-the-art and recent investigations for temperature predictions in Turbo-machineries

L.Y.M. Gicquel¹ B. Cuenot¹, G. Staffelbach¹, O. Vermorel¹, E. Riber¹, A. Dauptain¹ F. Duchaine¹, N. Gourdain¹, F. Sicot¹ T. Poinsot²

> ¹ CERFACS - CFD Team, Toulouse ² IMFT, Toulouse

> > http://www.cerfacs.fr Laurent.Gicquel@cerfacs.fr

<u>Need to ensure scalability/portability and 'engineering' use of the tools:</u>

CERFACS European Center for Research and Advanced Training in Scientific Computation

Where is CERFACS?

42 avenue G. Coriolis 31057 Toulouse Cedex 1, FRANCE

3

MUSAF II Colloquium – 18th-20th September 2013 – Toulouse (CIC)

Multiphysics, Unsteady Simulations, Control and Optimization Around aircraft and within engines

	Day 1	Day 2	Day 3	🔁 SAFRAN
Morning	Acoustic & Noise Predictions	Reacting Flows	Optimization	
Afternoon	Heat transfer, structures & loads	Rotating Flows	UQ-Control	Cognied Penalet Semulation of Gas Tarboos
				AIRBUS CERIAC

I] State-of-the-art of unsteady simulations in combustors:

- => Massively parallel LES of combustors
- => Trends and potential orientations for LES in industrial burners

II] State-of-the-art massively parallel CFD for rotating and blade flows:

=> Massively parallel RANS/URANS of compressors

- => LES for turbine flows and aero thermal environment predictions
 - High fidelity flow simulations (modeling issues)
 - Wall heat transfer predictions and LES

III] Towards multi-physics CFD based on LES:

IV] Conclusions:

4

I] State-of-the-art of unsteady simulations in combustors:

- => Massively parallel LES of combustors
- => Trends and potential orientations for LES in industrial burners

II] State-of-the-art massively parallel CFD for rotating and blade flows:

=> Massively parallel RANS/URANS of compressors

- => LES for turbine flows and aero thermal environment predictions
 - High fidelity flow simulations (modeling issues)
 - Wall heat transfer predictions and LES
- III] Towards multi-physics CFD based on LES:

IV] Conclusions:

Flow acceleration due to gas expansion/combustion:

- Subject to thermo-acoustic oscillations (highly destructive and quasi unpredictable),
- Locus of pollutant formation,
- Strong thermal constraints...

=> Most recent publications demonstrate the superiority of LES [1]: i.e. captures the strong coupling between turbulence/mixing/combustion

[1] Gicquel, L.Y.M. et al., Large Eddy Simulations of gaseous flames in gas turbine combustion chambers, PECS (in press), 2012.

Target configuration: Single sector gaseous (partially premixed) LES [1]

AVBP – strong scaling

Scalability/portability of LES codes open new perspectives:

- Full azimuthal chamber LES

=> azimuthal thermo-acoustic instabilities [1]

- Increase model accuracy of single-sector LES

- => grid resolution sensitivity [2]
- => pseudo-detailed chemistry [3]
- => multi-phase flow models
 - Euler / Euler approach
 - Euler / Lagrange approach
- => multi-physics: conduction, radiation [4]

- Extended single-sector LES (whenever possible)

=> cover the elements after / before the combustor

L. Gicquel, GE Research, August 15th-16th, 2011.

Integrated LES of combustor and NGV

I] State-of-the-art of unsteady simulations in combustors:

- => Massively parallel LES of combustors
- => Trends and potential orientations for LES in industrial burners

II] State-of-the-art massively parallel CFD for rotating and blade flows:

=> Massively parallel RANS/URANS of compressors

=> LES for turbine flows and aero thermal environment predictions

- High fidelity flow simulations (modeling issues)
- Wall heat transfer predictions and LES
- III] Towards multi-physics CFD based on LES:

IV] Conclusions:

- Rotating machines are involved in most of the energy conversion processes,
- Unsteady flows are still not well understood, especially in multistage turbomachines,
 - \succ aerodynamic instabilities are penalizing for efficiency (design margins).
- Problems to simulate these devices are the size, the complexity, the Re number => CPU costs:
 - most of the industrial simulations focus on limited parts of the system (such as isolated blades) that are solved with a steady RANS approach.

Research approach: unsteady whole configuration

<u>Sliding mesh</u> method (non-coincident interface):

- Unsteady RANS calculation considering the whole geometry,
- All unsteady interaction at interface are simulated,
- Whole mesh is around **100M 1000M** cells for a 3 stage compressor [1].

- > adapted to all configurations,
- important cost.

Unsteady whole configuration solution (entropy field)

[1] N. Gourdain et al, CSD, 2:015003, 2009.

Simulation at design operating point

- 512 processors (Blue Gene/L),
- 24 days of computation (one rotation), i.e. 300,000 CPU hours.

[1] N. Gourdain et al, CF: 39(9):1644-1655, 2010.

Entropy flow field (h/H=83%)

Large multistage effects (blade rows interactions):

> flow in the 3^{rd} rotor is partially driven by wakes of the 2^{nd} stator.

13

Compressors: existing CFD methods

Comparisons of experimental/research results

[1] N. Gourdain et al, CF: 39(9):1644-1655, 2010.

- 1: stator wakes
- 2: rotor potential effects
- 3: rotor-stator interaction modes

I] State-of-the-art of unsteady simulations in combustors:

- => Massively parallel LES of combustors
- => Trends and potential orientations for LES in industrial burners

II] State-of-the-art massively parallel CFD for rotating and blade flows:

=> Massively parallel RANS/URANS of compressors

- => LES for turbine flows and aero thermal environment predictions
 - High fidelity flow simulations (modeling issues)
 - Wall heat transfer predictions and LES
- **III**] Towards multi-physics CFD based on LES:

IV] Conclusions:

- As for compressors, unsteady flows are still not well understood,
- Problems are the **size**, the **complexity**, the **Re number** (although lower than for compressors)
 - => CPU costs
- Challenges today for turbine designers is the prediction of heat transfer:
 - a 15 K difference on the temperature prediction leads to a reduction of the engine life duration by a factor 2,
 - > (U)RANS methods may not be adapted to complex flows: transition, heat transfer...

Two leverages to release or anticipate better the aero thermal constraints of this device

0.05

0.03

0.02

0.01

0.05 0.04 0.03 0.02 0.01 0

Ō

Turbine flows – Physical modeling

T. Léonard et al., in ASME Turbo-Expo, Glasgow, 2010.

N. Gourdain et al., in ASME Turbo-Expo, Vancouver, 2011.

Instantaneous grad p flow field (elsA)

- RANS predicts a non-physical shock-wave,
- URANS predicts the vortex shedding but flow features are damped by artificial viscosity,
- LES demonstrates its capacity to transport flow vortices and acoustic waves.

Comparisons with experiments

- RANS predicts a non-physical shock on suction-side,
- URANS/LES correctly predict global values,

• LES estimates correctly the experimental Strouhal number.

Turbines: LES vs RANS

Heat transfer is driven by the *freestream turbulent* intensity

(i.e. the turbulence at the inlet)

L. Gicquel, GE Research, June 25th-26th, 2012.

19

Basic questions about LES around blades:

- what numerical scheme (explicit vs implicit), what mesh topology / resolution
- what SGS model (wall model or wall resolved)
- what computational domain extent

Turbines: LES vs RANS

[1] E. Collado Morata, N. Gourdain and L.Y.M. Gicquel. Structured vs. Unstructured LES for the Prediction of Free-Stream Turbulence Effects on the Heat Transfer of a High Pressure Turbine Profile, IJHMT (in press), 2012.

L. Gicquel, GE Research, June 25th-26th, 2012.

al.,

012.

One key element for LES to reproduce such behaviors is the introduction of an unsteady turbulent field at the inlet of the vane [1, 2]

Wall-resolved LES of the flow in the vane seems possible and does improve reliability of the thermal predictions (aerodynamic response of the flow).

HOWEVER:

- Very large grids (structured or unstructured)
- Massively parallel machines and code scalability are pre-requisite
- Alternatives => wall models (DES, DDES, wall laws...)
 - => need for reliability studies of such solutions

!!! What is really needed in terms of design for these flows !!!

- As for compressors, unsteady flows are still not well understood,
- Problems are the **size**, the **complexity**, the **Re number** (although lower than for compressors)
 - => CPU costs
- Challenges today for turbine designers is the prediction of heat transfer:
 - a 15 K difference on the temperature prediction leads to a reduction of the engine life duration by a factor 2,
 - \succ (U)RANS methods may not be adapted to complex flows: transition, heat transfer...

Two leverages to release or anticipate better the aero thermal constraints of this device

24

Comparison of CFD methods to predict blade internal cooling channel flow:

[1] Gourdain, N., Gicquel, L. Y. M., Fransen, R., Collado, E. & Arts, T. Application of RANS and LES to the Prediction of Flows in High Pressure Turbines Components. ASME Turbo Expo 2011 (2011).
[2] Fransen, R., Gourdain, N., Gicquel, L.Y.M., Steady and unsteady modeling for heat transfer predictions of high pressure turbine blade internal cooling, ASME Turbo Expo 2012 (2012).

U-bend

- Geometrical parameters
 - Hydraulic Dh= 0.075 m
 External radius= 1.26 Dh

40.5

X/Dh

• Re = 40000

- Grid: full-tetra 6M cells
- Inlet profile obtained from RANS predictions
- Pressure outlet BC
- No-slip adiabatic walls (wall-resolved LES)

Interactions between turbulence and the recirculation bubble flow strongly impact the minimum velocity peak value and its positionning within the veine

CE2F/C

- Geometrical parameters
 - Hydraulic diameter= 0.1 m
 - Rib spacing = 10 x h_{rib}
 - Blockage ratio = 30%
- Re = 40000

• <u>Ref. data :</u>

Casarsa, L. (2003). Aerodynamic performance investigation of a fixed rib-roughened internal cooling Passage. PhD Thesis, Universita degli Studi di Udine, Von Karman Institute for Fluid Dynamics

Ribbed channel

Time = 3.751 s

Complex unsteady separated flow

between the ribs

30

SCED

Axial velocity mean profiles in the symmetry plane

Whatever grid topology (provided that you can do a wall-resolved LES) => you will capture the first moments

CE3E/C

Ribbed channel

• The main outcome is a better estimation of the wall shear stress map:

• One has to keep in mind that LES cost is still much higher than RANS...

34

As well as the wall heat flux: here expressed in terms of an Enhancement Factor [1]

[1] Cakan, M. Aero-thermal Investigation of Fixed Rib-roughened Internal Cooling Passages. (2000).

35

I] State-of-the-art of unsteady simulations in combustors:

- => Massively parallel LES of combustors
- => Trends and potential orientations for LES in industrial burners

II] State-of-the-art massively parallel CFD for rotating and blade flows:

=> Massively parallel RANS/URANS of compressors

- => LES for turbine flows and aero thermal environment predictions
 - High fidelity flow simulations (modeling issues)
 - Wall heat transfer predictions and LES

III] Towards multi-physics CFD based on LES:

IV] Conclusions:

LES in the vane & the cooling channels: conjugate heat transfer problem...

Multiple difficulties appear covering physical and HPC issues:

1/ All-in-one or *multiple dedicated* solvers

2/ How to <u>couple efficiently two partitioned non coincident domains</u>?

- data distribution versus centralization
- interpolation, conservation

3/ What *quantities / fields* to exchange and at *what rate*?

4/ How to converge two fields dictated by very different time scales?

5/ Whatever the method retained is the aggregated numerical solver stable?

Typical investigation for couple LES / conduction: courtesy of F. Duchaine

Instantaneous flow field: Iso Q-criterion colored by velocity

y+

Turbomachines LES

10

• LES in rotating channels is needed:

- Wall normal rotation
- LES simulations of stabilizing and destabilizing effect of Coriolis and centrifugal forces.

• Experimental data from VKI [1]:

- full rotating test bench
- time resolved PIV

[1] Coletti et al., Flow field investigation in rotating ribroughened channel by means of particle image velocimetry, Exp. in Fluids (2011)

5

X/h

0-ì

Ζ

Overview of LES computation with ALE method : (rotation of all the channel in absolut frame)

L. Gicquel, GE Research, June 25th-26th, 2012,

Turbomachines LES

- LES in rotating vanes is also needed:
 - Strategies need to be evaluated
 - Single passage
 - Multiple passages
 - Interface treatment
 - Gain in flow physics needs to be confirmed
 - CPU cost of such tools ???
- Experimental data??

L. Gicquel, GE Research, June 25th-26th, 2012.

Courtesy of G. Wang: CERFACS Post-Doc fellow

I] State-of-the-art of unsteady simulations in combustors:

- => Massively parallel LES of combustors
- => Trends and potential orientations for LES in industrial burners

II] State-of-the-art massively parallel CFD for rotating and blade flows:

=> Massively parallel RANS/URANS of compressors

- => LES for turbine flows and aero thermal environment predictions
 - High fidelity flow simulations (modeling issues)
 - Wall heat transfer predictions and LES
- III] Towards multi-physics CFD based on LES:

IV] Conclusions:

LES for combustion chamber is quasi-acknowledged as being a mandatory tool:

- => Can serve as multiple purpose tool: design, advance diagnostics...
- => How to use it as an efficient complement to RANS

LES around blades:

- => There is a need for such a tool: especially if aero thermal quantities are
- to be accurately estimated
- => Wall-resolved LES will be expensive (other alternatives?)

LES in the cooling channels of the NGV or blades:

=> Clearly accessible today provided that you have CPU time and a massively parallel code

Future: fully coupled LES and conduction solver...

Gas turbine flows have a very high Reynolds number:

- Compressor at operating conditions: Re ~ 5 $10^6 \Rightarrow N \sim 37 \ 10^{11.25}$
- Combustor at operating conditions: Re ~ 5 $10^5 \Rightarrow N \sim 37 \ 10^9$
- Turbine at operating conditions: Re ~ 1 10⁶ => N ~ 1 10^{11.25}

PROPER HPC DESIGN OF CODES AND MACHINES WILL MAKE THE DIFFERENCE IF LES IS TO BE USED BY INDUSTRY

CERFACS European Center for Research and Advanced Training in Scientific Computation

What's CERFACS?

CERFACS has seven shareholders

One hundred permanent people in 5 teams

RANS versus LES : Impact on a design criterion (i.e. RDTF) [1-4]

RTDF(r) profile measures the radial $RTDF(r) = \frac{\left\langle \overline{T}(r,\theta) \right\rangle_{\theta} - \left\langle \overline{T}(r,\theta) \right\rangle_{\theta r}}{\left\langle \overline{T}(r,\theta) \right\rangle_{\theta} - \overline{T}_{inlet}}$ temperature heterogeneities through the exit plane of the chamber \Rightarrow controls the turbine lifetime !! **Rolls-Royce** R 80 100-0.9 0.8 80 Radial position [%] 0.7 Measurements 60 **RANS** results 0.6 LES results 60 0.5 0.4 40 40 0.3 0.2 20 20 0.1 RTDF (arbitrary scale) RTDF (arbitrary scale) RTDF (arbitrary scale) [1] G. Boudier et al., Comb. Inst., 31(2):3057-3082, 2007. [2] G. Boudier et al., INCA workshop, 2005. [3] S. James et al., AIAAJ, 44(4):674-686, 2006. [4] P. Moin et al, AIAAJ, 44(4):698-708, 2006. 47 L. Gicquel, GE Research, June 25th-26th, 2012.

