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Towards predictive simulation of wildfire spread
using a reduced-cost Ensemble Kalman Filter
based on Polynomial Chaos approximation.

By M.C. Rochoux †‖‡, S. Ricci ‡†, D. Lucor ††, B. Cuenot †, A. Trouvé ¶
AND J.-M. Bart †¶

The sequential correction of a fire spread model parameters is performed via the as-
similation of airborne-like fire front observations, in order to improve the simulation and
forecast of the fire propagation. An Ensemble Kalman Filter (EnKF) is applied to reduce
the uncertainties in the atmospheric and vegetation parameters for the Rate Of Spread
(ROS) model. The non-linear relation between the parameters and the fire front position
induced by the non-linearities of the fire spread is described stochastically over the EnKF
members. In order to reduce the computational cost of the data assimilation algorithm, a
surrogate model based on a Polynomial Chaos (PC) approximation is used in place of the
forward propagation model. The merits of using the EnKF algorithm based on the PC
approximation are highlighted on experiments using synthetical and real measurements.

1. Introduction

Because wildfire spread involves both multi-physics and multi-scales, our ability to
predict the behavior of wildfires at large regional scales (i.e., at scales ranging from a few
tens of meters up to several kilometers) remains limited. Current wildfire spread simula-
tors mainly rely on front-tracking techniques where the propagation speed of wildfires,
also called the Rate Of Spread (ROS), is the main physical quantity of interest. The ROS
is treated as a simplified function of vegetation, topographical and meteorological prop-
erties, based on Rothermel’s model (Rothermel 1972). A first limitation in this approach
is that the feedback of the fire on the atmosphere and on the fuel is not accounted for.
A second limitation is that the actual input variables that determine the ROS are only
known with limited accuracy. For the wildfire spread simulation to be predictive and com-
patible with operational applications, the uncertainty in the ROS semi-empirical model
should be quantified and reduced.

In this study, a Data Assimilation (DA) methodology is considered in order to minimize
the uncertainty on the parameters for the ROS model using fire front observations, and
thus over-come some of the current limitations of regional-scale wildfire modeling. DA
provides indeed an attractive framework for integrating fire sensor observations into com-
putational models, for accounting for the effects of both observation and modeling errors
and thereby for providing optimal estimates of poorly known parameters and improved
predictions of fire spread dynamics. Previous works (Rochoux et al. 2012) describe a cost-
effective DA prototype using an Extended Kalman Filter (EKF) algorithm that relies on
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the assumption that the relation between a perturbation in the model parameters and the
resulting change in the fire front position (the observation operator) is linear. The EKF
linearises, sometimes unrealistically, this operator based on local derivatives, which are
often difficult to compute reliably. While this EKF-based prototype showed very good re-
sults for a controlled grassland fire experiment, for realistic cases of regional-scale wildfire
spread where the wind direction and magnitude may vary and the vegetation properties
may be strongly heterogenous, the local linearity hypothesis may not be satisfying and
the resulting analysis may not be optimal (Ros & Borga 1997). Here, to better account for
non-linearities in the observation operator, an Ensemble Kalman Filter (EnKF) was im-
plemented (Evensen 1994). This ensemble-based DA approach was originally developed
for dynamic state estimation and has already been used in the wildfire modeling com-
munity for temperature state correction (Mandel et al. 2008). It was recently extended
to sequential parameter estimation in the field of hydraulics (e.g., Durand et al. 2008,
Moradkhani et al. 2005). In the present study, the EnKF is used to stochastically char-
acterize the non-linear relationship between the fire front position and the ROS model
parameters, thus allowing for a temporal correction of the vegetation and atmospheric
characteristics as the fire propagates.

The obvious source of numerical errors of EnKF stems from sampling. In fact, Li &
Xiu (2008) showed that more frequent data assimilation by EnKF does not intuitively
lead to a more accurate estimate of the true control variables due to the accumulation of
sampling errors. However, the size of the sample used in the EnKF algorithm may prove
computationally burdensome within an operational environment. Efforts have therefore
been devoted to designing more efficient EnKF schemes by reducing the sampling errors
(e.g., Szunyogh et al. 2008, Li & Xiu 2008). In the case of a real fire propagation, the
convergence of the EnKF is established for a number of members that is not compatible
with operational application; additionally, the required size of the sample significantly in-
creases with the complexity of the physics (multi-parameter estimation), the non-linearity
in the model (complex physics), since the sampling error increases with the non-linearity
in the observation operator, thus emphasizing the need for a reduced-cost EnKF. For
this purpose, and following work from Li & Xiu 2009, a numerical strategy based on
Polynomial Chaos (PC) approximation is proposed; the polynomial surrogate model is
used to generate a large number of members for the EnKF at a low computational cost.

In this paper, we present an ensemble-based DA approach and computationally efficient
algorithm to improve fire front propagation modeling, reducing the uncertainty in the
model parameters. The stochastic approach is used to estimate the covariances matrices
in the EnKF that describe the relation between the vegetation and atmospheric param-
eters and the fire front position. The paper is organized as follows. The fire propagation
model (also called the forward model) is presented in Section 2. Section 3 explains the hy-
brid PC-EnKF algorithm developed for the wildfire application. The performance of the
resulting wildfire simulation capability is demonstrated in Section 4 using synthetically-
generated and real observations.

2. The fire spread model (the forward model)

The DA algorithm primarily relies on a numerical tool for the fire spread simulation,
denoted by M[ti,ti+T ](x), where x designates the set of n control parameters and [ti, ti+T ]
is the time interval for the model integration (also denoted as cycle ci). This model
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simulates the wildfire spread as a thin flame zone that self-propagates normal to itself
towards unburnt vegetation, using the following two components:
• a sub-model for the ROS Γ based on Rothermel’s model: Γ [m/s] is written as a

function of the fuel depth (e.g., the vegetation thickness) δ [m] such as:

Γ(x, y, t) = P
(
Mf ,Σ,uw(x, y, t), ...

)
δ(x, y), (2.1)

where the coefficient P [s−1] depends on the local vegetation characteristics (especially on
the fuel moisture content Mf and the fuel particle surface-to-volume ratio Σ [m−1]) and
on the meteorological properties (i.e., the wind velocity at mid-flame height uw [m/s]).
• a level-set-based solver for the front propagation: A progress variable c ranging from

0 in the unburnt vegetation to 1 in the burnt vegetation is introduced as a flame marker;
the flame front is identified as the iso-contour cf = 0.5. The two-dimensional variable c
is calculated as a solution of the following propagation equation using a total variation
diminishing scheme (Rehm & McDermott 2009; Rochoux et al. 2012):

∂c

∂t
= Γ |∇c| , (2.2)

with Γ specified, locally, along the normal direction to the front cf = 0.5 using Eq. (2.1).

3. The ensemble-based Data Assimilation algorithm using Polynomial Chaos

3.1. Stochastic estimate of the observation operator

Let assume the EnKF algorithm is applied for one assimilation cycle ci between times ti
and ti+T . Starting from an a priori ensemble of control parameters x−,k

ci (k = 1, · · · , Nens

where Nens is the ensemble size), the fire spread model produces an ensemble of predic-
tions of the time-evolving fire front location (predicted measurements) designated as
y−,k
ci = H(x−,k

ci ). More precisely, this observation operator H is the composition of the
fire spread model M[ti,ti+T ] (that provides the spatio-temporal variations of the progress
variable c over the time window [ti, ti + T ]) with the selection operator S(cf ) (that
provides the (xf , yf )-coordinates of the p points representing the discretized cf = 0.5
contour at the observation time ti + T ).

In order to provide an estimate of the model deviation from the observations denoted
by yo

ci , we compute the distance between the prediction y−,k
ci and the observation vector

yo
ci on top of which a noise ξk is added to avoid the ensemble collapse (Burgers et al.

1998). This distance called the innovation vector and denoted by dk
ci reads

dk
ci = yo

ci + ξk − y−,k
ci (3.1)

3.2. The Ensemble Kalman Filter update

Based on the Bayesian theory, the EnKF algorithm assumes that the control parameters
x−,k
ci and the observations yo

ci are random variables defined by Gaussian probability
density functions (PDF) with a zero mean value and an error covariance model. The
prior error covariance matrix is denoted by P−

ci with variance σ2
x, and the observation

error covariance matrix is denoted by Cyoyo with variance σ2
o . The DA procedure offers

to combine these PDF in order to estimate the set of parameters that minimizes the error
variances of the control parameters, knowing the innovation vector dk

ci . It provides, for
cycle ci, an ensemble x+,k

ci of optimal estimates of the true vector xt
ci satisfying

x+,k
ci = x−,k

ci + Cxy(Cyy + Cyoyo)−1dk
ci , (3.2)
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Figure 1. Schematic of the PC-based EnKF algorithm at cycle ci.

where Cxy and Cyy are the covariance matrix of the model parameters with the pre-
dicted measurements of fire front positions, and the covariance matrix of the predicted
measurements, respectively.

Using the standard notation of the Kalman Filter, the gain matrix Kci reads

Kci = Cxy(Cyy + Cyoyo)−1, (3.3)

where Cxy = P−
ciH

T with HT the linearised observation operator and Cyy = HP−
ciH

T .
The formulation (3.3) avoids the estimation of P−

ci and H, difficult to compute reliably.
Using the ensemble of model input parameters x−,k

ci and output results y−,k
ci , the rela-

tionship between the fire front positions and the model parameters can be stochastically
characterized. This method allows to better take into account the non-linearity in the
observation operator H than a local estimation H achieved with a finite difference scheme
as in EKF. Such approach provides an ensemble of posterior estimates x+,k

ci easily used to
simulate an ensemble y+,k

ci of retrospective posterior estimates of the fire front positions
over [ti, ti + T ] as well as an ensemble of forecasts of the fire spread beyond ti + T . In
order to allow for a temporal correction of the model parameters between the cycles,
the EnKF algorithm is sequentially applied. Along the cycles, the parameter evolution is
artificially set up (Moradkhani et al. 2005):

x−,k
ci+1 = x+

ci + εkci (3.4)

where x+
ci is the mean of the posterior estimates x+,k

ci and εkci is a randomly-generated
mean zero normal variable with standard deviation (STD) σx.

3.3. The Polynomial Chaos-based Ensemble Kalman filter update

In the classical EnKF algorithm, a Monte Carlo sampling is used to generate the prior
members x−,k

ci . While this provides an accurate access to the full statistics of the modeling
uncertainties provided a large enough sample, it involves a large number of forward model
integrations. In order to maintain the EnKF computational cost compatible with the fire
application, a numerical strategy based on a PC expansion is outlined in Fig. 1.

The key idea in the PC expansion technique is to build a polynomial approximation of
the forward model response (i.e., of the observation operator H) to a prior estimate of the



Reduced-cost EnKF for wildfire spread simulation 5

control parameters x−
ci . Therefore, the simulated positions of the fire front y−

ci = H(x−
ci)

are projected onto a stochastic space spanned by a set of orthogonal polynomials Φq(x−
ci)

(q = 1, ..., Npc) that are suitably selected in accordance with the PDF of x−
ci . As these

n control parameters x−
ci are assumed to follow a Gaussian distribution in EnKF, the

surrogate model of the observation operator (denoted by Hpc) is built upon the Hermite
polynomials basis (Ghanem & Spanos 2003). Hpc can be formulated as follows:

y−
ci
∼= y−

ci,pc = Hpc(x
−
ci) =

Npc∑
q=1

ŷqΦq(x−
ci), (3.5)

where the unknowns are the Npc vectors ŷq = ((ŷ1)q, ..., (ŷp)q), with p the number of
points along the fire front cf = 0.5, Npc = (n + Qpo)!/(n!Qpo!) the number of Hermite
polynomials and Qpo the maximum order of the polynomial approximation.

Due to the orthogonality of the PC basis, the q-th PC coefficients are given by:

ŷq =
E[Hpc(x̂

−
ci)Φq(x̂−

ci)]

E[Φq(x̂−
ci)

2]
, (3.6)

where E[·] refers to the expectation operator satisfying E[Φq(x̂−
ci)Φl(x̂

−
ci)] = 0 if q 6= l,

E[Φq(x̂−
ci)

2] is a normalization factor, and x̂−
ci is the quadrature roots vector of size Nquad.

The numerator E[Hpc(x̂
−
ci)Φq(x̂−

ci)] is computed using a Gauss-Hermite quadrature rule;
that is,

E[Hpc(x̂
−
ci)Φq(x̂−

ci)] =

∫
Rn

Hpc(x̂
−
ci)Φq(x̂−

ci)dP (x̂ci) (3.7)

=

Nquad∑
j=1

H(x̂−,j
ci ) Φq(x̂−,j

ci )ωj , (3.8)

where y−,j
ci = H(x−,j

ci ) is provided by the forward model integration evaluated at the
j-th quadrature root x̂−,j

ci with its associated weight ωj . It is worth noting that this
quadrature rule provides an exact integration of Eq. (3.8) if the order of the polynomial
approximation is such that 2Qpo < 2(Nquad − 1).

The construction of the surrogate model Hpc requires therefore a limited number Nquad

of forward model integrations. Hpc is then used in the EnKF algorithm, instead of the
forward model H, to compute the predictions of the time-evolving fire front locations
y−
ci,pc for a large number of members Nens so as to properly estimate Cxy and Cyy.

Thus, the EnKF update can be performed with reliable covariances matrices, leading to
the posterior estimates of the control parameters x+,k

ci .

4. Results: Evaluation of the data-driven simulation capability

4.1. Validation of the Ensemble Kalman Filter implementation

As a validation step, the EnKF algorithm is applied to correct the parameter P [s−1] in
Eq. (2.1), that accounts for all the uncertainties in the model. In the following experi-
ments, the fire is ignited as a circular front and spreads upon a random fuel distribution.
Observations are synthetically-generated each 100s with the forward model H and a cho-
sen true value xt

c1 = 0.3s−1; an observation error is also introduced, yo
ci = H(xt

ci) + εo,
where εo is a random variable with a Gaussian distribution characterized by the STD σo.
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Figure 2. Estimation of the parameter P for cycle 1. The black dashed line corresponds to the
true parameter 0.3s−1, the blue dashed-dotted line corresponds to the mean value 0.1s−1 of the
prior estimates; and the red solid lines correspond to the mean of the posterior estimates and
the vertical error bars to the associated STD σx.

The ensemble of prior values for the first cycle x−,k
c1 is drawn from a Gaussian distribution

centered in 0.1s−1 with a STD σx = 0.05s−1.
The red solid curve in Fig. 2(a) displays the mean of the posterior estimates over 1

cycle of EnKF when the observation error STD σo increases from 0m to 60m. When
σo is small (x-axis), the mean of the posterior estimates (y-axis) is equal to the true
value xt

c1 (black dashed line) with a small error STD σx (vertical error bars), meaning
that the estimation of the parameter is reliable. As σo increases, the posterior estimates
remain closer to the background value (blue dashed-dotted line) and the ensemble spread
is larger (up to 0.05s−1). These results show that the DA algorithm allows to retrieve the
true values of the control parameter even when the observation error is large. For this
validation case, it was shown that the EnKF converges for a minimum of 48 members
and that the convergence is reached more easily when σo is small, see Fig. 2(b).

The sequential application of the EnKF allows for a temporal correction of the pa-
rameter P for an experiment where the true time-varying value (black dashed curve)
was artificially set as illustrated in Fig. 3(a) over 9 cycles for Nens = 48 and σo = 5m.
For cycle c1, the mean value of the prior estimates is set to 0.1s−1, while for cycle ci
(i ∈ [2, 9]), it is set to the mean of the posterior estimates from the previous cycle ci−1

(blue dashed-dotted curve). The EnKF solution (red curves) allows to identify an opti-
mal mean value of the parameter (see Fig. 3(a)) that results in an ensemble of fire fronts
that is coherent with the observation error statistics, while the model without data as-
similation (blue curves) significantly underestimates the rate of spread (see Fig. 3(b)).

4.2. Application to a controlled grassland fire

The EnKF is applied to a real-world case study corresponding to a reduced-scale con-
trolled grassland fire (4m×4m) occurring under moderate wind conditions. The observed
fire front locations are extracted from thermal-infrared imaging every 28s, with a mea-
surement error σo = 0.047m (based on the spatial resolution of the camera).
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Figure 3. Sequential application of the EnKF over 9 cycles using Nens = 48 members and
observations generated with a time-varying true parameter and a constant error STD σo = 5m.

The control parameters are the fuel moisture Mf , the fuel particle surface-to-volume
ratio Σ and the wind properties (both magnitude uw and direction dw). The prior es-
timates of these parameters are described in table 1 along with the associated STD. A
prior ensemble of 512 members is generated and corrected by assimilating the fire front
at time t = 78s. Results are presented in Fig. 4(a): the black dots represent the observed
front (discretized with 40 points), the blue trajectory represents the spread of the forward
model simulations obtained without data assimilation (i.e., using the prior estimates of
the 4 control parameters), while the red trajectory derives from the data assimilation
update using the posterior estimates in the forward model integrations. It is found that
the EnKF algorithm allows to significantly decrease the distance between the observa-
tions and the simulated fronts at t = 78s. It should also be noted that the uncertainty
on the front positions is reduced as the STD of posterior front positions (red error bars)
is smaller to that of the prior front positions (blue error bars).

Fig. 4(b) compares the forecast of the front position at t = 106s obtained using the
prior estimates (blue curve) and the posterior estimates from DA at t = 78s (red curve).
The EnKF algorithm appears to properly represent the forecast trajectory at t = 106s
with a small uncertainty. This result illustrates the improved accuracy of the fire spread
simulation and forecast using the EnKF. Still, this calibration is made at the expense of
a heavy computational cost (512 members for 4 parameters).

4.3. Towards a cost-effective Ensemble Kalman Filter

The application of the PC-based EnKF is illustrated for a wind-aided grassland fire spread
directed northward (uw = 0.8m/s, dw = 0deg) during 100s. The control parameters are
the moisture content Mf and the surface-to-volume ratio Σ; the means of the prior
estimates are 15% and 13000m−1 with 3.3% and 3000m−1 error STD, respectively. The
observations are synthetically-generated by adding an artificial noise σo = 1m to the true
trajectory obtained for Mf = 10% and Σ = 14500m−1. A PC approximation (with a
polynomial order Qpo = 4 and a quadrature order Nquad = 5) is used to build the model
response surface to the prior control parameters. Figure 5(a) illustrates the observation
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Table 1. Real-world case study: Prior and posterior ensemble statistics.

Control parameter Prior mean value Prior STD Posterior mean value Posterior STD

Moisture content Mf 22.0 % 10.0 % 14.7 % 3.10 %
Surface area/volume Σ 11500m−1 3000m−1 13720m−1 2364m−1

Wind magnitude uw 1.0m/s 0.20m/s 0.88m/s 0.15m/s
Wind direction dw 307.0 deg 16.0 deg 304.3 deg 7.4 deg
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(b) Forecast time, t = 106s.

Figure 4. EnKF application to the grassland burning. The observations are represented with
black dots; the simulations are represented with DA (red squared curves) and without DA (blue
circled curves), the error bars (scale-factor of 1/2) are indicative of the ensemble spread.

operator mapping onto the space spanned by the control parameters (for xf - and yf -
coordinates of the fire front positions, top and bottom panels respectively). In the present
case, the results are shown for the 5th point on the front position starting from the west
side of the front. The orange crosses represent the simulated fire front positions associated
to the 5× 5 quadrature roots.

The surrogate model is used with Nens = 1000 members to evaluate the prior fire front
positions that are represented in Fig. 5(a) with grey circles for the 1000 prior estimates.
The mean value of the prior estimates is shown in blue. It should be noted that the grey
circles are contained within the surface response described by the orange crosses, meaning
that the PC decomposition properly approximates the observation operator. Figure 5(b)
shows the 1000 posterior estimates of the control parameters obtained using the EnKF.
The means of the posterior estimates (shown in red) are 10.4% for Mf and 14088m−1

for Σ, which is more consistent with the true values. It also shows that the posterior
ensemble STD is significantly reduced compared to the prior ensemble STD, meaning
that the PC-based EnKF algorithm allows to retrieve reliable statistical information for
only 25 forward model integrations. For this example, the computational time is reduced
by a factor of at least 5 compared to the classical EnKF.

Figure 6 compares the simulated fire front using the mean value of the posterior ensem-
ble with the most probable fire front derived from the PDF of the posterior estimates. It
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Figure 5. Surrogate model of the observation operator Hpc. Prior and posterior estimates (grey
circles) of the xf - (top) and yf -coordinates (bottom) of the fire front positions mapped onto the
PC-based model surface response (orange crosses).
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Figure 6. Comparison of the mean posterior front (black crosses) with the most probable
front (red solid lines) at t = 100s. The ensemble spread is delimited by the grey dashed lines.

shows that these fronts feature a similar topology, meaning that the Gaussian assumption
on the error statistics inherent in the EnKF remains valid for the present configurations.
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5. Conclusions

A data assimilation strategy based on the Ensemble Kalman Filter (EnKF) is demon-
strated to account for both experimental and modeling uncertainties in wildfire spread
modeling. Based on a sequential multi-parameter estimation, this prototype is efficient
at reducing the uncertainty in the numerical predictions of fire spread for synthetical and
real measurements. The results show that, in the present configurations, a PDF sampling
based on Polynomial Chaos allows to significantly reduce the computational cost of the
EnKF and to provide accurate error statistics on model inputs and outputs.

The authors would like to acknowledge R. Paugam (King’s College London) for sharing
the experimental data, F. Duchaine and T. Morel (CERFACS) for their support on
OpenPALM, as well as G. Iaccarino and P. Constantine (CTR) for the helpful discussions.
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