This is the accepted version of the following article: Axel Klawonn, Martin Kiihn, Oliver Rhein-
bach, “Adaptive Coarse Spaces for FETI-DP in Three Dimensions”, SIAM J. Sci. Comput., Vol.
38(5), pp. A2880-A2911 (2016), ©2016 Axel Klawonn, Martin Kiihn, Oliver Rheinbach, which
has been published in final form at https://epubs.siam.org/doi/10.1137/15M1049610.

ADAPTIVE COARSE SPACES FOR FETI-DP IN THREE
DIMENSIONS?

AXEL KLAWONN*, MARTIN KUHN*, AND OLIVER RHEINBACH'

July 19, 2016

Abstract. An adaptive coarse space approach including a condition number bound for FETI-
DP methods applied to three dimensional problems with coefficient jumps inside subdomains and
across subdomain boundaries is presented. The approach is based on a known adaptive coarse space
approach enriched by a small number of additional local edge eigenvalue problems. These edge
eigenvalue problems serve to make the method robust and permit a condition number bound which
depends only on the tolerance of the local eigenvalue problems and some properties of the domain
decomposition. The introductions of the edge eigenvalue problems thus turns a well-known condition
number indicator for FETI-DP and BDDC methods into a condition number estimate. Numerical
results are presented for linear elasticity and heterogeneous materials supporting our theoretical
findings. The problems considered include those with random coefficients and almost incompressible
material components.
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1. Introduction. Second-order elliptic equations with discontinuous coefficents
often yield very ill conditioned stiffness matrices when discretized by finite elements.
Examples are diffusion problems or elasticity problems with materials having large
discontinuities in the diffusion coefficients and the Young modulus, respectively. Al-
most incompressible components can be also a source of ill-conditioning in the case of
linear elasticity. These sources of ill-conditioning can lead to a severe deterioration of
the convergence rate of iterative methods that are used to solve the resulting linear
system. Here, we will consider domain decomposition algorithms as iterative solution
methods. A heterogeneous material can lead to coeflicient jumps accross and along
subdomain boundaries, especially when an automatic graph partitioner is used to cre-
ate the domain decomposition. Certain problems with special coefficient distributions,
such as constant coeflicients on subdomains, can then still be handled by using special
scalings; see, e.g., [53, 37, 21, 35, 50, 1]. However, there are many cases when this is
not sufficient and an augmentation of the coarse space is needed to ensure a small con-
dition number and the convergence of the iterative scheme within a reasonable number
of iterations. An additional approach to enhance the coarse space of the domain de-
composition algorithm is to first solve local (generalized) eigenvalue problems and then
incorporate these eigenvectors appropriately into the coarse space. This strategy is
mostly based on certain user-given tolerances for the eigenvalue problems which deter-
mine the amount of extra work to be carried out in order to obtain good convergence
properties. These adaptive strategies exist for many kinds of domain decomposition
algorithms such as overlapping Schwarz, FETI/BDD (Finite Element Tearing and
Interconnecting/Balancing Domain Decomposition), or FETT-DP/BDDC (Dual Pri-

*Mathematisches Institut, Universitit zu Koln, Weyertal 86-90, 50931 Koln, Germany;
{axel.klawonn,martin.kuehn } @uni-koeln.de.

fTechnische Universitit Bergakademie Freiberg, Fakultit fiir Mathematik und Infor-
matik, Institut fiir Numerische Mathematik und Optimierung, 09596 Freiberg, Germany;
oliver.rheinbach@math.tu-freiberg.de.
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significantly enhanced and extended version, including complete proofs.
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mal Finite Element Tearing and Interconnecting/Balancing Domain Decomposition
by Counstraints); see, e.g., [4, 5, 15, 16, 9, 60, 61, 12, 26, 31, 44, 45, 7, 2, 48, 6, 49, 29].
In [29], a very brief overview on adaptive coarse spaces for domain decomposition
methods can be found.

The approach presented in this paper is based on the adaptive coarse space
from [44] for FETI-DP. For two dimensions, the first proof for the approach from [44]
was published in [32]. For three dimensions, Theorem 6.1, presented in the present
paper, provides the first proof for an enhanced approach based on [44]; cf. the in-
troduction of our coarse space in Section 5. Let us note that some of our results
have been presented at the 23rd International Conference on Domain Decomposition
Methods (DD23) [27]. At the same conference, other adaptive approaches were also
announced in the talks of C. R. Dohrmann [8], H. H. Kim [24], and O. B. Widlund [63].
After the DD23 conference, the new approaches for adaptive BDDC and FETI-DP
were made public in several technical reports [30, 2, 48, 6], and, very recently in [25].
Another very recent technical report gave an overview on adaptive BDDC; see [49].
The technical report version of the present paper [30] contained the first publically
available proof in three dimensions for the Pp-based family of approaches [44, 7],
which use very localized eigenvalue problems.

For FETTI instead of FETI-DP, a different algorithm was introduced and analyzed
in [61]. This coarse space was originally established for overlapping Schwarz methods
(see [59, 60]) and then transferred to BDD and FETT.

The coarse space [44] was already used extensively also in 3D (without the edge
eigenvalue problems proposed in this paper), see [45], also to create a parallel adaptive
multilevel BDDC [57]. But no rigorous condition number bound had existed, although
a heuristic indicator was derived in [44]. Recently, in [32], proofs were given in detail
for the algorithms of [44] and [7] in two dimensions, and they were both compared
to the approach in [31]. In [32], the authors also presented a modification of [7] that
allowed other scalings than deluxe scaling. The paper presented here now provides
the theory for the three dimensional case by adding edge eigenvalue problems to the
classic approach [44], which used face eigenvalues, only.

Our extension of the coarse space designed by the authors of [44] consists of
adding eigenvalue problems on edges belonging to more than three subdomains which
have to be solved in addition to the face eigenvalue problems. Then, we can prove
a robust condition number bound for the preconditioned FETI-DP operator. This
bound depends on a user-given tolerance TOL; see Theorem 6.2. Note that, when an
automatic mesh partitioner is used in 3D, these edges (with a multiplicity of four or
larger) are rare (in practice a few percent or less [52]), as border quadrangle are rare
on the globe. However, without the edge eigenvalue problems, a few bad eigenvalues
resulting from these edges can spoil the convergence of the Krylov solver; see, e.g.,
Table 8.2.

We will provide our bound and its proof for three dimensional elasticity using de-
flation techniques although other implementations of the coarse space are also possible.
We will also discuss the cost and necessity of these additional eigenvalue problems.
Our results are of equal interest for adaptive BDDC methods [45].

The remainder of the paper is organized as follows: In Section 2, we introduce
the model problem, mention the corresponding finite element discretizations that will
be used and outline the domain decomposition approach. Sections 3 and 4 give a
short introduction to FETI-DP methods, scalings, preconditioners and deflation (also
known as projector preconditioning) and balancing techniques. In Section 5, we will
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explain how the operators necessary for computing constraints are established and
how the latter are obtained. Our approach starts with the adaptive coarse space of
[44] and adds constraints from supplementary eigenvalue problems. Based on the
new adaptively computed coarse space, in Section 6, we will give the proof for the
bound on the condition number as mentioned. In Section 7 we outline some ideas
on how to reduce the number of eigenvalue problems and constraints. Section 8
will provide several tests of compressible and almost incompressible elasticity and
compare the algorithms proposed by [44] with the modified coarse space presented
here. Additionally, at the end of the section, we will test an approach to reduce the
number of eigenvalue problems. Eventually, in Section 9, we will draw conclusions
from our theory and simulations and provide advice when the respective coarse space
should be used.

2. Model problem and geometry. Let Q C R%, d = 2,3 be a bounded poly-
hedral domain, let 0Q2p C 02 be a closed subset of nonvanishing measure and let
Oy = 00\ 9Qp. In addition, we define the Sobolev space Hi(Q,00p)? =
{v e H(Q)? : v = 0 on 90p}, Young’s modulus E(z) > 0, and Poisson’s ratio
0<vx)< % for all x € Q2. We consider the variational formulation of compressible
linear elasticity: Find u € Hg(Q,9Qp)?, such that

a(u,v) = F(v) Yo € H}(Q,00p)%, (2.1)

with a(u,v) := [, 2pe(u) : e(v)dz + [, Adiv(u)div(v)dz and F(v) = [, f - vdz +
fOQN g - vds. Here, the Lamé constants A and p can be computed from E and v as

A= (1+V)E(+2U), uw= ﬁ The product e(u) : (v) of the linearized strain tensor

e(v) with &5 (v) = 1(9v;/0z; + Ov; /0x;) is given by e(u) : e(v) = Zﬁfj:l gij(w)ei;(v).
The functions f : @ — R? and g : 90y — R? are given volume and surface forces,
respectively, prescribed on 2 and the Neumann boundary 9Qy .

With Poisson’s ratio v approximating 0.5, we speak of almost incompressible
elasticity. For almost incompressible elasticity locking phenomena can occur for the
standard formulation and therefore the pressure variable p := Adiv(u) is introduced.
Then, we derive the weak form of the mixed formulation in (u,p). Special care has to
be taken when chosing the finite elements for solving the mixed formulation. It has to
be ensured that the chosen finite elements fulfill the discrete Ladyzenskaya-Babuska-
Brezzi condition to remain stable.

We decompose 2 into N nonoverlapping subdomains €2;, ¢ = 1,..., N where
each (; is the union of shape regular tetrahedral or, in almost incompressible cases,
brick elements of diameter O(h). The diameter of a subdomain is denoted by H; or,
generically, by H. Furthermore, we define the interface I' as the set of values that
belong to at least two subdomains and require that finite element nodes of neighboring
subdomains match across the interface. The interface in three dimensions consists of
vertices, edges, and faces, defined as in [38]. Edges and faces are considered as open
sets. We will denote a face between the two subdomains €; and ; by F¥, an edge
between €2;, Q;, € and maybe other subdomains by £ and a vertex of €2; touching
several subdomains by V**. We further define I';, and 0%2; 1, as the set of finite element
nodes on I" and 99Q;, respectively. Eventually, for an arbitrary face F and an arbitrary
edge £ we introduce the standard finite element cutoff functions 8 and ¢, which are
equal to 1 on F and &, respectively, and are zero otherwise.

For the case of compressible linear elasticity, we use P; conforming finite elements.
If Poisson’s ratio v approaches the incompressible limit, we take Qs — Py conforming
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finite elements which are inf-sup stable. In our experiments, we will statically con-
densate the pressure variable elementwise. The space of our finite elements on €2,
consisting of either standard piecewise linear finite elements or statically condensated
Q5 — Py finite elements, is denoted by Wh(Qi). In both cases the finite element func-
tions vanish on 9Qp. For a part of the interface I C T with nonvanishing measure
we define the finite element trace space W"(I”) and, in particular, W; := Wh(99;).
Finally, we define W := II¥ , W; and denote by W C W the space of functions in W
that are continuous on I'.

3. FETI-DP Method. In this section, we will briefly review the standard
FETI-DP algorithm. For a more detailed description on FETI-DP, see, e.g., [14,
13, 62], and, especially in combination with linear elasticity, [38].

For every subdomain i = 1,..., N we compute the the local stiffness matrix K ()
and the right hand side f(). We subdivide the set of degrees of freedom into interior
1, dual A, and primal II degrees of freedom. Interior degrees of freedom will belong
to nodes in the interior of subdomains and on the Dirichlet boundary dQ2p while dual
and primal degrees of freedom belong to nodes on the interface I'. The corresponding
variables on €2; will be denoted by uy), u(AZ), and u%). The choice of II will determine
the initial coarse space. We will set all vertices according to the definition of [38,
Def. 3.1] (see also [34]) primal and require that there are at least two primal nodes
on every edge £%. Moreover, if £ is a nonstraight edge, we set a third one primal,
that does not lie on a straight line between the other two. This only is an issue
for irregular decompositions of €2 and the necessity of this will be explained in more
detail in Remark 1; see Section 5. Using the notation introduced before, for theoretical
purpose, we can assume the following partitioning

i )T )T i i
P G B R
F et 11 R
Ky Kpa o Knn U
We also introduce the block diagonal matrices
Kpp = diagl , K\ Kan = diagh, KU\, and Ky = diagY, K.
Combining the index sets I and A to the index set B leads to

% i)T
K Ky

i) i) ) i) )T ()T
Ky = [K(i) %0 ] Ky = [Kl(‘HKﬁ)A} and fy = [f}) f5 }
AT AA

as well as to the block structures

. T T
Kpp = diagij\il Kgg,uB = {ug)T,...,u%N)T} , and fp:= [ g)T,..., J%N)T]

A union of the index sets A and II results in the index set I" and the matrices K SF) and

K 1(“11) which will be needed for our preconditioner and generalized eigenvalue problems.

Furthermore, we need partial assembly operators R(rf)T and R% = [Rg )T, ceey R(HN)T]
so that Rﬂ assembles the variables ug), i=1,...,N, associated with primal degrees
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of freedom. The space of functions that are continuous in the primal variables will be
denoted by W C W. We introduce

o = 3" BT KGR, B = [ROTHG, EOTRG), [fB, S
=1

and the jump operator B = [B(l), e ,B(N)} with Bu = 0 for u € W. This yields

K BT u f
B
Here, K and fare of the form

K= Kpp KHB and f = [fB]
Knp Kmn Jo

Assuming invertibility of Kpp, we can form the FETI-DP coarse operator
St = Krn — KnpK 55K . (3.1)
After a second elimination step, we obtain the FETI-DP system FA = d where
F = BpKppBy + BeKppKiipSunKus K BE,

N
d= BpKypfp + BeKp5KiipShm ((Zggw r(;)) _ KHBKB}BfB> .

Then, the FETI-DP system can be solved by the preconditioned conjugate gradients
(PCG) algorithm. The appearance of S H in F' provides a coarse problem. This
coarse problem is determined by the size of the primal degrees of freedom and should
accelerate convergence.

Other more advanced coarse spaces based on averages or first-order moments over
edges or faces could be used and implemented using a transformation of basis; see,

g., [14, 39, 38, 43, 35]. Here, for simplicity, we will only consider primal vertex
constraints as an initial coarse space. We will then use adaptive constraints to reduce
the condition number as described in the next section. This will allow us to prove
the condition number bound which we will present in Section 6 for problems with
coefficient jumps in 3D.

Next, we introduce the standard Dirichlet preconditioner M 51. The exten-
sion and restriction operators Rl? and Rr from and onto I' consist of zeros and
ones. Rlif extends a vector by zero onto I' while Rr restricts a vector correspond-
ingly by removing interior variables. For z € T'), N 99, let N, be the set of in-
dices of subdomains that have x on their boundaries. Then, we define the nodal
coefficient evaluation p;(7) := SUP,equpp(p.)nes P(T), Where ¢, is the nodal finite
element function at x, supp(p,) its support, and p(z) is the coefficient value at
x. For linear elasticity, p(x) = E(z), i.e., we use the Young Modulus. Let §;
share a face or an edge with ; and = € 08, , N 084, then, the corresponding
nonzero row of BY) is scaled by 6! (z) := pi(x)/ > ken, Pe(r) and vice versa; see, e.g.,
[54, 37, 62]. This defines the local scaling matrix D; and the scaled jump operator
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Bp = [Bg), ... ,BI(:,N)} = [D:BW,...,DyB™)]. The standard Dirichlet precondi-
tioner is now given by

Mp' == BpRLSRr B},

where S := diag)y ; S® and S is the local Schur complement after elimination of
the interior variables from K (9| that is

. . N\ —1 .
i 7 7 7 1), T
$O = K9 - k1) (K1) KO

Let us remark that there are other choices for the scaling available in the literature
(see, e.g., [53, 21, 1]), but we restrict ourselves in the numerical results presented in
Section 8 to the case mentioned above and referred to as p- or patch-p-scaling; cf.,
[35, 50].

4. Deflation and Balancing. In this section, we briefly explain the deflation
and the balancing approach. Deflation [47] is also known as projector precondition-
ing [10]. These approaches provides a mechanism to enhance the coarse space by
additional constraints. Other possibilities are a transformation of basis or optional
Lagrange multipliers; see, e.g., [34, 38] and [20, 38], respectively. For a short intro-
duction to deflation and balancing, especially in the context of FETT-DP and domain
decomposition methods, see [47, 10, 11, 46, 36, 22] and the references therein.

In the following for a matrix A, by AT we denote an arbitrary pseudoinverse
satisfying AATA = A and ATAAT = AT,

The following description is based on [36] extended to the case of a semidefinite
matrix F. Let U = (uq,...,u) be given as the matrix where the constraints are
stored as columns. Then, we define

P.=UWUTFU)*UTF.
We have range P = range (U(UTFU)*) and ker P = ker(UT FU)TUTF). Next, we
multiply the FETI-DP system by (I — P)T, which yields the deflated system
(I -P)TFA=(I-P)d. (4.1)

The deflated system is consistent. Moreover, range U C ker((I— P)T F), and therefore
range (F(I — P)) C kerU” remains valid also for a semidefinite matrix F. Since
(I — P)T is also a projection, we can show that

(I-PYF=FI—-P)=(I-P)F(1I-P).

Therefore, only components of the dual variable in range (I — P) are relevant to the
construction of the Krylov spaces. By A* we denote the solution of the original system
F) = d, which is unique only up to an element in ker B”. Let \e range (I — P) be a
solution of (4.1). Then, X is identical to (I — P)A\* up to an element in ker BT. We
have the decomposition

N =PX 4+ (I — P)\* = A+ (I — P)X\*,
where \ can be expressed by A\ = P\* = U(UTFU)TUTFF+F)\* = PF*d. Since
BT(I-P)\* = BT X, we can then show that the solution in terms of the displacements
does not change if (I — P)\* is replaced by A, i.e.,
up =S~ (fA - BT)\*) =g! (fA - BT(;\—i- ;\)) )
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Preconditioning the resulting system of equations by the Dirichlet preconditioner M !
gives

My (I —P)Y'FX =My (I - P)ld.

Another multiplication with I — P from the left gives the new symmetric precon-
ditioner My}, := (I — P)Mp*(I — P)” which can also be denoted deflation precon-
ditioner. As shown in [36, Theorem 6.1], we do not change the nonzero eigenvalues
of the former left hand side when multiplying with I — P. Therefore, the deflated
problem reads: Find A € range (I — P), such that

MpEEX = Mppd.

Instead of computing A a posteriori, the computation _can be included into each
iteration. This leads to the balancing preconditioner Mg %—, =M ;}, + PF+. Al-
though the balancing preconditioner for a semidefinite matrix /' is then of the form
Mgp=Mpp+UUTFU)YUTFF we can equivalently use

Mgp=Mpp+UUTFU)TUT

since it will be applied to FA = d. Let us note that the Theorems 6.2 and 6.3 in [36]
can be proven for a semidefinite matrix F by replacing F~! by F+ and by following
the arguments given in [36]. As a result, we obtain that the eigenvalues of Mg}DF and
M;}jF are essentially the same. In order to provide a condition number bound for
the deflation and the balancing approach let us first assume that a standard Rayleigh
quotient estimate for the Pp := BL B operator is given, i.e., ||PDw||?Sv/||w||?Sv < C for

all w € {w € W |UTBw = 0} for C > 0. An estimate of this type will be established
in Lemma 6.1. Then, based on results of [36], it was shown in [32, Lemma 3.2] that
the condition number of the FETI-DP operator preconditioned by deflation/projector
preconditioning or balancing can be bounded from above by C.

Let us briefly comment on the computational cost. We use deflation or balancing
as a second, independent mechanism (in addition to an initial coarse space from partial
assembly; see (3.1)) to implement the coarse space constructed from our eigenvalue
problems. Other approaches to implement this coarse space would also be possible.
For the deflation or balancing approach, the coarse operator U” FU has to be formed
as a sparse matrix and, during the iteration, the application of (U7 FU)™ to a vector
has to be computed. When forming the Galerkin product UT FU, it is essential for
the efficiency to exploit the sparsity of U and the structure of F'. The pseudoinverse
(UTFU)" can be computed at essentially the same cost as a sparse Cholesky factor-
ization. However, for large adaptive coarse problems, the computational cost can still
be large.

5. Adaptive coarse spaces, geometry issues for irregular partitioning,
and enforcing constraints. In the following, we will introduce a modified variant
of the 3D algorithm presented in [45], which is based on face eigenvalue problems,
extended by some new edge eigenvalue problems of similar pattern. Let us consider
the face F between the subdomains ; and Q; as well as its closure F7. For
the basic algorithm we proceed as in [44] by using the notation from [32] and define
Br,; = [B](;)J Bl([,{_j] as the submatrix of [B(%¥) BU)] consisting of all the rows that contain
exactly one +1 and one —1. Analogously, Bp r,; = [Bg? F Bg?Fij] will be the scaled
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submatrix of [Bg)Bg)]. Let us note that the scalings used in the local eigenvalue

problems are the localized scalings from the FETI-DP algorithm, i.e., for a node on

the edge between three subdomains €2;, £2;, and Q, the scaling for the jump w; — w;

in the corresponding eigenvalue problem is 53 = pi/(pi + p; + pi) if p-scaling is used.
We then define

S 0 T
S = { 0 S(j)] ’ Pp,; = Bp r,; Br,-

By W;; we denote the space of functions in W; x W, that are continuous in the
primal variables shared by €2; and €; and by II;; the £>-orthogonal projection from

Wi x W; to W;;. We introduce a second ¢2-orthogonal projection from W; x W; to
range (I1;; S;;11;; + o(I — I1;;)) which is denoted by II;;, and where o is a positive
constant, e.g., the maximum of the diagonal entries of S;;. We just note that we
build both of them so that they are symmetric and we will explain in detail how to
obtain II;; and ﬁij after Remark 1.

We now establish and solve the following generalized eigenvalue problems

0105, P, Sij Po, Wi Tijwiy = iy (T (T Sig Ty + o(1 — i) )Ty + o (1 — Thy) Jwy,

(5.1)

for uijTOL. Thus, for every eigenvalue problem for w;; € W; x W; we will just

consider the jumps w; — w; across the closure F of the face F'4. We remark that
II;; removes the rigid body modes of each of the single substructures ; and ;
while I —II;; is an orthogonal projection onto the space of rigid body modes that are
continuous on W; x W; and move 2; and §2; as a connected entity. Consequently, the
right hand side of the eigenvalue problem (5.1) is symmetric positive definite; cf. [44].

This eigenvalue problem can be motivated by the localization of the global Pp
operator, which is at the center of the condition number proof of FETI-DP and
BDDC methods; cf. the penultimate paragraph of Section 4: Define the bilinear form
i (-, ) == (-, Sij-) for wij xvi; with w5, v;; € W; xW;. The local generalized eigenvalue
problem (5.1) can then be given alternatively by the variational formulation: Find
wk; € (ker Sj;)*, such that

Sij (PDi]. Vij, PDij wf]) = /ijsij (vij,wfj) Vvij S (ker Sij)L.

A more detailed motivation, based on the local estimate for faces (5.6), can be found
in [44, Sections 4 and 5] and [45, Section 3]. Note that essentially the same motivation
can be given for our edge eigenvalue problem introduced in (5.4) below.

Note that the eigenvalue problems are defined for closed faces. As already pro-
posed in [45, p.1819], we split the computed face constraint columns ufj := Bp,r,;Si; Pp,; wfj
into several edge parts ufj g, and a part on the open face ufj £, all extended by zero
to the closure of the face. We then enforce not only the open face constraint but all
the constraints

uple Bp,wi; =0, m=12..., (5.2)
uff;BF”wU =0. (53)

We will refer to the edge constraints in (5.2) as “edge constraints from face eigenvalue
problems”; see also the numerical experiments in Section 8.
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Clearly, since uj; = uf; z + >, uf; ¢, we then also have u;" Br,;w;; = 0. With
this approach, we avoid coupling of constraints on the closure of the faces which
would spoil the block structure of the constraint matrix U; cf. [45]. Thus, from a
single eigenvector defined on a closed face, in case of a structured decomposition into
cubes, we would obtain one face constraint and 4 edge constraints.

In order to control the jumps w; — w; for subdomains §2;, €; that only share an

edge; compare Figure 5.1, we additionally solve the eigenvalue problems

Iy Ph SaPp, MaTlyw}, = pufy (T (Mg STl + o(1 — ) )y + o(1 — T))w);
(5.4)

for uleTOL and with IT;; and TI;; constructed in the same manner as II;; and ﬁij
before.

Clearly, this only has to be carried out for edges
shared by more than three subdomains and also in
some cases where the open face does not contain any
Q; Q; nodes. We refer to [52] where experiments showed
that typically around 99% of the edges are com-
mon to exactly three subdomains when an automatic
graph partitioner is used. Hence, for automatically
partitioned domains, which we consider as the stan-
Q W dard case, these new eigenvalue problems just come
into play for either a small number of edges or a
slightly larger number of small edges. Therefore, the
Figure 5.1: Cross section view of .extra work for ?olving the edge eigenvalue problqns
four subdomains sharing an edge in 15 small. We will come back to this matter and dis-
a regular partition; €2; shares faces cuss the cost and necessity of edge eigenvalue prob-
with §2; and €y but only an edge Jems in practice in Section 8.
with ;. Finally, the constraints resulting from edge

eigenvalue problems are
wiy" Ph. SiPp,wi = 0. (5.5)

As in the two-dimensional case (see [33]), locally, for w;; € W; x Wj, wy € Wi x W,
which satisfy the constraints, the estimates

wgﬁ”H”Pg” SijPDinijﬁijwij < TOL wiTjﬁinijSinijﬁijwij, (56)

wh T Pg“ S Pp,, TyTlwy < TOL w} Ty Sy Tl Tiwy (5.7)

hold. With [3, Section 2.7], this can be derived from the fact that II;; and II;;
commute and the fact that I;s(I — Is)wis = (I — I;s)w;s. The last feature is
obtained since (I — II;) is an orthogonal projection onto the space of rigid body
modes that are continuous on W; x W,. Note that the same arguments can be used
for edge eigenvalue problems, too. Obviously, (5.7) does only apply to subdomains
Q; having edges £ shared by subdomains §; without a common face F*.

We will now use the index s € {j,1} to describe simultaneously face (s = j) and
edge (s =) eigenvalue problems and their operators.

We still have to show that the local estimates from above, for functions fulfilling
the constraints, are also valid for all w;; € W; x W, derived from a restriction of
w € W to W; x Wy, since this will be used in the FETI-DP condition number proof.
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Hence, for s = j or s =1 let Il;5 be as above. Then, for w € W we have

[R(i)w R(i)w] [R(i)w}

R(S)w] € W;s, and therefore Il {R(S)w Ry

(5.8)
Exactly as in. [32], we argue as follows. (I — Tis)wis = (I — Tis)w;s yields
Pp, TLs(I — T;s)w;s = 0 and S;sI;5(I — s )w;s = 0. Since we can split any wk, re-
sulting from the local eigenvalue problem (5.1) or (5.4) as wk, = (I —IL;5)wk, + I ;wk
it therefore holds

wEILis Ph. SisPp, Miswis < TOLw] T1;58;IT;5w;s (5.9)
for all w;s in W; x Wy with waTPgisSisPDiswis =0, ,ufs > TOL. Therefore, the
estimate is valid for w;s € Wis which satisfies the constraints; cf. [44].

REMARK 1. In order to guarantee that TOL is finite for all w;s € W;s we have

to treat the kernel of S;s correctly. As already mentioned by [{4, Assumption 8] or
[55, Assumption 29] we have to ensure,

Yw;s € Wis 1 SisWis = 0= Bisw;s = 0. (510)

Thus, we have to be aware of dim(Il;s ker S;sI;5) = 7 if ker S;s = 12 (or comparably
if at least one subdomain has Dirichlet boundary conditions). This can result from an
additional hinge mode, i.e., a rigid body rotation of the two subdomains around the
common edge. In order to ensure the assumption (5.10) we select at least two primal
vertices on straight edges. For nonstraight or bent edges we will have to select a third
primal vertex that is not located on the straight line between the other two vertices
on the edge; to prevent the hinge mode that would violate (5.10). We remark that the
existence of sufficient vertices on an edge is, in general, not ensured if we use a graph
partitioner and a common understanding of edges and vertices; see, e.g., [38, Def.
3.1]. We thus transform arbitrary dual nodes that fulfill the given restrictions into
primal vertices.

Completely analogously to [51], we build II;5 and II;,. By defining RE?T, k=1,s

as the assembly operator of primal variables on 9€); N 0€s and identity on the rest of

'@ x TG) we obtain
R}
Ris = (R(S)>

and the orthogonal projection onto Wis,
I := Ris(RLRis) ' RE.

We note that the inverse can be computed cheaply since R;s contains a large identity
block and a very small block of the size of the number of the degrees of freedom that are
common to the two subdomains. For the construction of II;; we exploit the fact that
I —TI;, is an orthogonal projection onto the rigid body modes that are continuous on
W; x Ws. For straight edges and subdomains only connected by this edge and without
sufficient Dirichlet boundary the hinge mode mentioned before is in fact a rigid body
mode and will be used to establish the projection I, If {71,...,7} is the set of
rigid body modes that are continuous on W; x W, we use a modified Gram-Schmidt
method to create an orthonormal basis {71, ..., } and define II;; = I — Zle rrl.
The adaptively computed constraints coming from eigenvalue problems will then be
enforced by a deflation approach; in all simulations we exclusively use the balancing
preconditioner.
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6. Condition number estimate. Before we are able to provide the theoretical
bound on the condition number of the preconditioned FETI-DP operator we have to
present an analytical expression for the application of the localized Pp-operator; cf.
the definition of the Pp-operator at the end of Section 4.

The local operators Pp,; and Pp,, on the closure of the face and edge, respectively,

are
(1) B gOT pO) )T i i !
Ppy; = B( j1’ {3] ?)b:;” <J1§ 1 and Pp,, = Béig ZB%;Z Bé;E B%L '
i K3 il (3 ?
BL; JFij Fij BL; JFij I«J] Bp ElzBEu BD Ey BE
see [32]. For a face FiJ with edges £7,...,E% m > 3, we define the cutoff function

on the closure of the face

19_7:1']' = 9_7:1']' + Z@S;j. (61)

p=1
We can use the cutoff function 6.:; on the open edge since all vertices were chosen to
P

be primal. For w € W, this gives

o] = [ e =] ©2

where I" is the finite element interpolation operator on €; and €1, respectively. For
the sake of simplicity, we assume that just Efj = & has a multiplicity greater than
three and equal to four with w; —w; as the problematic jump between two subdomains
sharing at least one edge but no face; see Figure 5.1. Other cases can be handled in the
same way. The application of the local Pp-operator of the edge eigenvalue problem
yields

R(l)w o Ih(ﬁguDl(wi —’LUZ))
PDil |:R(l)’w:| - |:Ih(9£ilDi(wl _ wz)) (63)
Let U = (uy,...,ux) be given as the matrix where the adaptively computed con-

straints are stored as columns , i.e., the constraints defined in (5.2), (5.3), and (5.5)
extended by zero to the space of all Lagrange multipliers to fit the dimension. By
Wy = {w € W |UTBw = 0} we denote the subspace of W which contains those
clements w € W satisfying the new constraints, i.e., Bw € ker U”.

LEMMA 6.1. Let Nx denote the maximum number of faces of a subdomain, Ng
the mazimum number of edges of a subdomain, Mg the mazximum multiplicity of an
edge and TOL a given tolerance for solving the local generalized eigenvalue problems.
We assume that all vertices are chosen to be primal. Then, for w € Wy, we have

|PDw|?§ < 4max{Nr, NgMg}2T0L|w|?§.

Proof. We first have a closer look at the global operator Pp and its restriction to
a subdomain. Since all vertices are primal, we obtain

v; = R(i)PDw = Z Ih(ﬁpjvi) + Z Ih(ngvi); (64)
FiiCofy £ oy
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see, e.g., [62, Sec. 6.4.3].

In contrast to other proofs on the condition number of the FETI-DP system,
where the additive terms of (6.4) are bounded separately, we will now rearrange these
additive terms. This is due to the fact that the face eigenvalue problems are solved
on the closure of the faces.

Therefore, we introduce a global and N local sets of pairs of indices {i,1}, where
each index pair represents an edge eigenvalue problem on £% and vice versa, i.e.,

E = {{4,1} 1 < 4,1 < N, 11 (9 NOY) > 0, uz(9Q,; NAY) = 0}
and, fori=1,...,N, & ={{j,l}c& :j=ivi=i}.

Here, pg is the d-dimensional Lebesgue measure. Thus, {j,I} € £* means that the
subdomains £2; and €2; share at least an edge but no face. In general, for subdomains
obtained from graph partitioners, these sets do not contain many elements as already
mentioned before.

For a given face F, we now denote the edges which are part of the closure
of the face by &7,...,&4. In order to avoid the proliferation of indices we take
an arbitrary edge £9 e {£/7,... €4} that is shared by €; and Q,,,.. Q. with
r1,...,7p € {1,..., N} \ {i}. We then have the interpolation operators

MO Fiv;) = I" (070 Dj(wi — w;)), (6.5)
Ih(t?gijvi) = Ih(ogij (DT1 (’LUZ — wh) + ...+ Drp(wi — pr)).

Obviously, for each edge £ € {E)7,...,£4} the term I"(0g:; (D, (w; — w;)) is part of
(6.6). For each edge £, we subtract it from (6.6) and add it to (6.5). The remaining
jumps in (6.6) can then either be added analogously to the corresponding face term

Ih(e]:irs DT‘S (wl - wTs))

(cf. (6.5)), if such a face exists, or they remain in (6.6).
If this is carried out for all faces and edges analogously (6.4) becomes

R(l)PDw = Z Ih(ﬁp-ij(wi - ’LU])) + Z Ih(ﬁgile(wi - ’w[)). (67)
FiiCofy {i,l}e&;

Here, we have replaced the cutoff functions for the open edges by those for the closure
of these edges, that is Jg = 1 at the endpoints of the edge and J¢ = ¢ for all other
nodes of the mesh. This can be done since all vertices are primal. We define the
Sp-seminorm | - |g, := (-, S®).) for k =i, 5.

Then, we estimate the face terms in (6.7) similar to the edge terms in 2D; see
[32]. The remaining edge terms in (6.7) can be estimated by using the constraints
obtained from the edge eigenvalue problems.

For w € Wy, wy = R®w, k € {i, 4,1}, we have

N
| Pow|% = > IR Ppw|g,
i=1
(6.7) N .
< QmaX{N]:,NgMg}Z Z |I (ﬁfiij(wi—wj))
i=1 | Fiicon,

2
Si
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+ > ["Wea Di(w; — w))|?

Si
{i,l}e&r

= QmaX{N]:,NgMg} [ Z [|Ih(19]_-iij(wi — Ub))ﬁgl + |Ih(19]:ijDi(wj — ’LUZ))|%J]
Fucrh

£ S (M @eaDilws — w) s + I (e Dt — wi)))
{i,l}e&x

(6.2),(6.3),(5.8)

T )
2max{Nr, NeM¢} [ Z [zy] Hijpgij [ 0 S(J')] Pp,;1Li; Lﬂ

(5.9)
< 2 maX{N}-, NgMg}TOL

T .
w; S(l) 0 w;
w3 L] el el

{i,l}e&*

(5.8)
= 2 max{Np, NeMe}TOL | 37 [luild, +lwsf3, |+ > [lwif, + Jwif3]

FiiCcr {i,l}e&>
2max{Nr, NeMe} > |RC

N
.2
w S

i=1

In the next theorem, we provide a condition number estimate for the precondi-
tioned FETI-DP algorithm with all vertex constraints being primal and additional,
adaptively chosen edge and face constraints.

THEOREM 6.2. Let Nx denote the mazimum number of faces of a subdomain, Ng
the mazimum number of edges of a subdomain, Mg the mazximum multiplicity of an
edge and TOL a given tolerance for solving the local generalized eigenvalue problems.
If all vertices are chosen to be primal, the condition number k(M ~1F) of the FETI-
DP algorithm with adaptwe constraints as described, e.g., enforced by the deflation
preconditioner M= MISP or the balancing preconditioner M ' = MBP, satisfies

< 2 maX{N]:, NgMg}TOL

= 4max{Nr, NgMg}2TOL|w|3§.

O

k(M'F) < 4max{Nz, Nge M }2>TOL.

Proof. The condition number bound for the deflation preconditioner can be given
with Lemma 6.1 and [32, Lemma 3.2]. The relation between the eigenvalues of M, }DF
and M55 F can be found in [46], or, in our notation in [36]. O

Let us finally note that the constant in the condition number estimate provided by
Theorem 6.2 is quite conservative. The geometrical quantities Nz, N¢, and Mg enter
our estimate when the Cauchy-Schwarz inequality is used to estimate the product of
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functions supported on faces and edges. These functions are not S;-orthogonal to each
other, but, in practice, their mutual S;-inner product is small. This is not exclusive to
our approach since these quantities already appear implicitly, in a generic constant C,
in the traditional (nonadaptive) FETT-DP and BDDC condition number estimates;
see, e.g., [43, 38, 62]. It can be observed numerically that often (5.9) provides a more
realistic indicator for the condition number, i.e., our results in Section 8 show that the
condition number is at the order of TOL in our numerical experiments rather than
at the order of 4max{ Nz, Ne M¢}>*TOL. This has already been observed by [44, 45],
and the use of (5.9) (for faces) has been proposed as a condition number indicator;
see also [55, 56, 57).

7. Reducing the number of eigenvalue problems. In this section, we briefly
describe strategies which can help to keep the number of eigenvalue problems as
well as the size of the coarse problem small — while still obtaining an acceptable
condition number. The first two ideas aim at reducing the number of edge eigenvalue
problems; see Section 7.1. The second approach aims at reducing the number of edge
constraints; see Section 7.2. The third reduction approach, first suggested in [31], is
based on considering the preconditioned starting residual to detect critical edges; see
Section 7.3. This strategy was proposed but not implemented in [31].

7.1. Reducing the number of edge eigenvalue problems.

7.1.1. Short edges. In order to reduce the number of edge eigenvalue problems
while keeping the theoretical condition number bound, we eliminate all eigenvalue
problems related to short edges. There, we set all edge nodes belonging to edge
eigenvalue problems as primal if there are not more than k£ dual nodes on the edge.
Throughout this paper, we consider edges as short if they consist of only a single node,
i.e., in our experiments, we use k = 1. Note that in unstructured decompositions,
e.g., from METIS, most edges have a multiplicity of only three. As a result, edge
eigenvalue problem are necessary only for a small number of edges and this strategy
applies only to the short edges among these. This strategy is always used in our
numerical experiments.

7.1.2. Edges at a distance from heterogeneities. Additionally, for com-
pressible elasticity, if no coefficient jumps occur in the neighborhood of an edge, we
do not take the corresponding eigenvalue problems into consideration. This is re-
lated to slab techniques; see, e.g., [18, 17, 32]. If the coefficient distribution is not
available then the diagonal entries of the stiffness matrix can be considered instead.
Let us note that, after reducing the number of edge eigenvalue problems, our explicit
condition number bound of Theorem 6.2 might not hold anymore in this form. Nev-
ertheless, based on the theory of slab techniques, the condition number is expected to
stay bounded independently of the coefficient jumps. This will be confirmed by our
numerical experiments in Section 8. The strategy can be implemented by traversing
the nodes on the edge while evaluating the coeflicient function. If no large hetero-
geneities are encountered then the edge eigenvalue problem can be discarded. If the
coefficient function is not available the diagonal entries of the stiffness matrix can be
used, instead. In presence of coefficient jumps combined with almost incompressible
components this technique is not advisable since constraints enforcing the essential
zero net flux condition may be removed from the coarse space. The number of co-
efficient jumps encountered while traversing the edge can also be used to define the
number of eigenvectors to be used for the edge, i.e., as an alternative to defining a
tolerance TOL: If a single heterogeneity is encountered, e.g., a single channel with
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a high coeflicient crosses the edge, then only one eigenvector will be added to the
coarse problem. This corresponds to using a single weighted edge average as first
suggested in [35]. Of course, for a larger number of channels more eigenvectors have
to be used. In the classical approach [35], it is then necessary to split the weighted
edge average [35] into several weighted averages, defined on subsets of the edge, or to
introduce additional primal vertex constraints.

7.2. Reducing the number of edge constraints from face eigenvalue
problems. The same idea as in Section 7.1.2 can be used to discard certain edge
constraints from face eigenvalue problems in order to reduce the size of the coarse
problem: Edge constraints from face eigenvalue problems are not added to the coarse
space if no coefficient jump is detected in the neighborhood of the edge.

7.3. Heuristics to reduce the number of eigenvalue problems based on
the residual. We follow an idea of [31] and assume that the residuals on faces and
edges without any jumps are several magnitudes smaller than those on faces and edges
with jumps along or across the interface. Therefore, for the closure of any face or edge,
generically denoted by A, with n Lagrange multipliers we compute r := M, ! (d—F))
and restrict the preconditioned residual to the closure of the face or edge, that is
AN = T‘A.

Then, we compute rp o := 1/4/n||rall2 to check its magnitude. Another reason-
able approach would be to compute the maximum norm of ry, i.e., 7y . In our
experiments, we take a combination of these two and check simultaneously for every
face or edge if A, < T and rp o < Too. If this is the case we do not consider
the corresponding eigenvalue problem and discard it (with all possible constraints).
Otherwise we continue as before and compute the constraints from our eigenvalue
problems. If the energy norm is used this approach is remotely related to the compu-
tation of Rayleigh quotients in [58].

Note that this approach can significantly reduce the number of eigenvalue prob-
lems but often results in a coarse space of comparable size. But due to the smaller
number of eigenvalue computations, the heuristic approach presented here is compu-
tationally less expensive.

8. Numerical results. In this section, we show numerical results for linear
elasticity using FETI-DP with the adaptive coarse space strategies discussed before.
We compare the coarse spaces introduced in [44, 45] and our new coarse space with
edge constraints from edge eigenvalue problems presented in Section 5. We recall
that by “edge constraints from face eigenvalue problems” we refer to edge constraints
which result from splitting constraints originating from eigenvectors computed on the
(closed) face; see (5.2) in Section 5.

We have implemented the new coarse space covered by our theory, see Lemma 6.2,
and two modifications thereof. In our tables, the three approaches will be denoted
by "Algorithms Ia, Ib, and Ic’. ’Algorithm Ia’ is the algorithm covered by our theory.
It will make use of the largest number of eigenvalue problems and will lead to the
most generous coarse problem. ’Algorithm Ib uses the neighborhood approach of
Section 7.1.2 to reduce the number of edge eigenvalue problems if they are not needed.
"Algorithm I’ makes use of the neighborhood approach described in Section 7.2, in
addition to the reduction approach of Section 7.1.2, to reduce the size of the coarse
space by discarding edge constraints from face eigenvalue problems which are not
needed.

Furthermore, we will test two variants of the classical approach of [44, 45]. These
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approaches do not use edge eigenvalue problems. As ’Algorithm IT', we will denote
the coarse space proposed in [44, 45], where all edge constraints from face eigen-
value problems are enforced as additional constraints. To the best of our knowledge,
this approach has not been implemented and tested before; cf. [55, 56, 45, 57]. As
"Algorithm IIT we will denote the “classic” adaptive approach already tested exten-
sively in [44, 45]. In this approach, all edge constraints from face eigenvalue problems
are simply discarded, which results in a smaller coarse problem at the cost of losing
robustness.

We use balancing to implement all adaptive constraints; cf. Section 4. For all
algorithms, the columns of U are orthogonalized blockwise (i.e., edge- and facewise)
by a singular value decomposition with a drop tolerance of 1le — 6. Let us note, again,
that our current theory from Lemma 6.2 covers Algorithm Ia. Although Algorithm Ib
and Ic are both not covered by the theory lined out in this paper, we will show that in
our experiments they will give almost the same results as Algorithm Ia. Algorithm IT
and IIT are not covered by the theory, and our numerical results will indeed show that
they cannot guarantee low condition numbers and iterations counts for all our test
cases.

In all cases of either compressible or incompressible linear elasticity the edge
eigenvalue reduction strategy from Section 7.1.1 is used. Since the strategies used in
Algorithm Ib and Ic are based on Young’s modulus F, and not Poisson’s ratio v, we
will not use the strategies for our test problems of almost incompressible elasticity.
For these problems, we will only report on Algorithm Ia.

For simplicity, we always assume the parameters E and v to be constant on each
fine element. As scaling we use p-scaling in form of patch-p-scaling, and we set Young’s
modulus at a node by the maximum of all values over the support of the corresponding
nodal basis function; cf. [35].

In the experiments, regular as well as irregular decompositions are tested. The
irregular decomposition is performed by the METIS graph partitioner [23] using the
options -ncommon=3 for compressible, -ncommon=4 for incompressible elasticity and
-contig to avoid noncontiguous subdomains as well as additional hinge modes inside
single subdomains.

In all tables, “x” denotes the condition number of the preconditioned FETI-DP
operator, “its” is the number of iterations of the pcg algorithm and “|U|” denotes the
size of the corresponding second coarse space implemented by deflation or balancing;
see Section 4. By N we denote the number of subdomains. For regular as well as
irregular decompositions, we define H = 1/+v/N and thus can define H/h also in
the irregular case. For our modified coarse space, we also give the number of edge
eigenvalue problem as “#&.,,“ and in parentheses the percentage of these in the total
number of eigenvalue problems. Our stopping criterion for the pcg algorithm is a
relative reduction of the starting residual by 107!°, and the maximum number of
iterations is set to 500. The condition numbers k, which we report in the tables, are
estimates from the Krylov process. In our tables, we will mark (estimated) condition
numbers below 50 in bold face to indicate that a sufficently large coarse space has
been found by the adaptive method. If not stated otherwise, the eigenvalue problems
are solved by the MATLAB “eig” function.

For the numerical experiments presented in this paper, we use TOL = 10. The
resulting condition number is then typically at the order of TOL; cf. the remark at
the end of Section 6 on the use of (5.9) as a condition number indicator; see also the
numerical results later in this section. Note that, although our algorithm is algebraic
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and thus appears to be black-box, the efficiency of the method relies on properties of
the underlying PDE. Therefore, in practice, TOL should be adapted to H/h, i.e., to
the classical condition number bound x < C(1 + log(H/h)?. Otherwise, for growing
H/h, the coarse problem can become large. For a small tolerance, the adaptive FETI-
DP method can even degenerate to a direct solver.

It is clear that Algorithms Ia, Ib, and IT will result in a larger coarse space than
Algorithm III or Algorithm Ic. For simple test examples, Algorithm Ic should reduce
to Algorithm ITI. Our numerical results will show that, in certain difficult cases, the
larger coarse space is indeed necessary.

We will give a short overview on the next subsections.

1. Section 8.1: Composite materials. In this section, we will consider com-
posite materials with regular and irregular decompositions into subdomains.
We will show that the classic algorithm of [44, 45] is sufficient when there
are no coefficient jumps at subdomain edges (see the examples with regular
decompositions) but that our extended coarse space (see Sections 5 and 6) is
often indispensable when irregular decompositions are used.

2. Section 8.2: Steel microstructure. In this section, we will a consider a
representative volume element (RVE) of a modern steel and again consider
regular and irregular decompositions into subdomains.

3. Section 8.3: Randomized coefficient distributions. In this section, we
will consider random coefficient distributions combined with irregular de-
compositions into subdomains. We will vary the volume fraction of the stiff
material and consider 100 random coefficient distributions. We will again see
that our coarse space is indispensable, here.

4. Section 8.4: Almost Incompressible Linear Elasticity. In this section,
we will consider different sample materials with almost incompressible compo-
nents using irregular decompositions into subdomains. Here, for some exam-
ples, the classic approach is sufficient but other examples require our enriched
coarse space.

5. Section 8.5: Heuristic approach on reducing the number of eigenvalue
problems and constraints based on the residual. In this section, we
will consider examples from the previous sections, combined with the heuristic
approach of Section 7.3. We show that our strategy can work well although
Theorem 6.1 is not valid anymore.

6. Section 8.6: Efficiently solving the eigenvalue problems. In this section,
we will briefly consider the cost of building and solving the eigenvalue prob-
lems exactly and use favorable approximate solvers to show that approximate
solutions of the eigenvectors also give low condition numbers and iteration
counts.

8.1. Composite materials.

Regular partitioning. We consider a linear elastic and compressible material on a
unit cube, see Figures 8.1 and 8.2, using a structured fine mesh consisting of cubes each
decomposed into five tetrahedral finite elements. We enforce zero Dirichlet boundary
conditions on the face with x = 0 and have zero Neumann boundary conditions
elsewhere. We apply a volume force f := [0.1,0.1,0.1]7.

First, we use v = 0.3 for the complete computational domain, and we test differ-
ent distributions of Young’s modulus E. Our first examples are two different (model)
composite materials consisting of a soft matrix material with E; = 1 and stiff inclu-
sions with Eo = le + 06. The stiff inclusions in the form of beams, arranged in a
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regular pattern, span from the face with x = 0 straight to the face with z = 1. In
the first composite material, there are N2/3 many beams. In a regular decomposition
into cubes we have one centered beam per subdomain, precisely; see Figure 8.1. The
intersection of the beams with the face + = 0 represents 1/9th of the area of the
face. The second composite materials consists of 4N2/3 many beams as depicted in
Figure 8.2. The intersection of the beams with the face = 0 here represents 4/25th
of the area of the face.

If a regular decomposition is used with these coefficient configurations, already
the classic approach from [44] performs well. We therefore only briefly present the
composite material no. 2 in Table 8.1. We see that for this simple case, where the
jumps do not cut through edges, all approaches lead to low condition numbers and
a low number of iterations. The most simple algorithm, i.e., Algorithm III performs
well while resulting in the smallest coarse space. Algorithm Ic automatically reduces
to Algoritm III, and therefore gives the same performance. This illustrates the effec-
tiveness of the neighborhood strategies from Section 7.1.2 and 7.2. For this problem,
the use of edge constraints can reduce the number of iterations further but not signifi-
cantly. This shows that edge constraints from face eigenvalue problems (Algorithm IT)
are not needed, here. The same is true for edge eigenvalue problems (Algorithm Ia).

In structured decompositions, we have a high number of edge eigenvalue prob-
lems in Algorithm Ia, i.e., around 50%; if the strategy to reduce the number of edge
eigenvalue problems from Section 7.1.2 is applied, all edge eigenvalue problems are
discarded while the results remain good; cf. Algorithm Ib and column 6 “&,,” in
Table 8.1. This is possible in this simple setting where there are no cuts of coeffi-
cient jumps through edges. Note that we do not reduce the coarse problem size; see
Table 8.1. In addition, we see that Algorithm Ic reduces to Algorithm IIT in these
cases.

REMARK 2. We always use the strategy described in Section 7.1.1, i.e., on short
edges we never compute edge eigenvalue problems but rather set the corresponding
edge nodes as primal. This means that our initial coarse space for all algorithms, i.e.,
Algorithm I, II, and III, is richer than the standard vertex coarse space.

Irregular partitioning. In a next step, we consider an irregular decomposition;
see Tables 8.2 and 8.3 for composite material no. 1 (H/h = 3 and H/h = 6) and
Tables 8.4 and 8.5 for composite material no. 2 (H/h =5 and H/h = 10).

In this case, jumps along and across subdomain edges are very likely to occur.

Figure 8.1: Composite material no. 1 using a regular (left) and an irregular (right) decomposition.
High coefficients E2 = 1e+ 06 are shown in dark purple in the picture, subdomains shown in different
colors in the background and by half-transparent slices. Visualization for N = 8 and H/h = 3.
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Figure 8.2: Composite material no. 2 using a regular (left) and an irregular (right) decomposition.
High coefficients E2 = 1e+ 06 are shown in dark purple in the picture, subdomains shown in different
colors in the background and by half-transparent slices. Visualization for N = 8 and H/h = 5.

Composite material no. 2, regular partitioning, and H/h = 10
Algorithm Ia, Ib, and Ic Algorithm I1 Algorithm IIT
N K its |U| H#Eeuvp K its |U| K its | |U]
a) | 3.37 | 15 | 2548 72 (57.1%)
33 | b) | 3.37 | 15 | 2548 0 (0%) 3.37 | 15 | 2548 | 3.55 | 18 | 556
c) | 3.55 | 18 556 0 (0%)
a) | 3.36 | 15 | 7332 216 (60%)
4% | b) | 3.36 | 15 | 7332 0 (0%) 3.36 | 15 | 7332 | 3.54 | 18 | 1536
c) | 3.54 | 18 | 1536 0 (0%)
a) | 3.39 | 15 | 15896 | 480 (61.5%)
5% | b) | 3.39 | 15 | 15896 0 (0%) 3.39 | 15 | 15896 | 3.55 | 17 | 3272
c) | 8.65 | 17 | 3272 0 (0%)

Table 8.1: Compressible linear elasticity with E; = 1, E9 = 1le 4+ 06. Coarse spaces for TOL = 10
for all generalized eigenvalue problems. H is the size of the subdomains, i.e., (1/H)3 is the number
of subdomains, & is the estimated condition number, ’its’ is the number of PCG iterations, |U| is the
size of the adaptive coarse space, #Eevp is the number of eigenvalue problems computed (and the
percentage wrt. the total number of eigenvalue problems). Condition numbers below 50 are marked
in bold face.

For all these test cases discarding the edge constraints from face eigenvalue problems
never seems to be a good option and often results in nonconvergence (its = 500); but
also for Algorithm II a large condition number and a large number of iterations are
observed. On the other hand, our Algorithm Ia, which makes use of our new coarse
space, in accordance with the theory, results in small condition numbers for all cases
— while, compared to Algorithm II, adding around or fewer than 5% of additional
constraints to the coarse space. Algorithms Ib and Ic can reduce the number of
edge eigenvalue problems significantly, e.g., around 50%. However, for Algorithm Ib
this still results in an almost identical coarse space. The coarse space of Algorithm
Ic is always significantly smaller than the one of Algorithm Ib and Algorithm II.
Nevertheless, condition number and iteration counts of Algorithm Ic are comparable
to those of Algorithm Ia while Algorithm IT cannot ensure this.

In general, for irregularly partitioned domains, we see that that the amount of
edge eigenvalue problems is between 0% and 12% for Algorithm Ia while this can be
reduced to 0 to 7% by Algorithms Ib and Ic. For Algorithm Ib, in the mean, we get
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Composite material no. 1, irregular partitioning, and H/h = 3.
Algorithm Ia, Ib, and Ic Algorithm I Algorithm IIT

N K its | |U]| H#Eeup K its |U| K its |U|
a) | 855 | 30 93 7 (11.9%)

3% | b)| 855 | 30 93 4 (7.1%) 8.55 30 90 8.43e+05 | 56 50
c) | 855 | 31 84 4 (7.1%)
a) | 14.48 | 37 | 278 14 (5.2%)

5% | b) | 14.48 | 37 | 278 8 (3.0%) 14.48 37 264 | 3.35e+05 | 211 | 153
c) | 14.48 | 37 | 227 8 (3.0%)
a) | 14.08 | 40 | 605 48 (6.0%)

7 | b) | 14.08 | 41 | 602 21 (2.7%) | 2.97e+05 | 118 | 569 | 3.00e+05 | 434 | 358
c) | 14.08 | 41 | 506 21 (2.7%)
a) | 16.45 | 42 | 1076 | 90 (5.2%)

9% | b) | 16.45 | 42 | 1075 | 45 (2.7%) | 3.61e4+05 | 115 | 1029 | 4.76e4+05 | 500 | 704
c) | 16.45 | 42 | 932 45 (2.7%)
a) | 15.87 | 43 | 1774 | 167 (5.2%)

11 | b) | 15.87 | 43 | 1770 | 95 (3.0%) | 2.69e4+05 | 190 | 1668 | 3.72e4+05 | 500 | 1174
c) | 15.87 | 43 | 1580 | 95 (3.0%)
a) | 17.32 | 45 | 3070 | 303 (5.6%)

13% | b) | 17.32 | 45 | 3068 | 171 (3.3%) | 2.79e4+05 | 345 | 2911 | 3.42e4+05 | 500 | 2032
c) | 17.32 | 45 | 2753 | 171 (3.3%)

Table 8.2: Compressible linear elasticity with E; = 1, E9 = 1le 4+ 06. Coarse spaces for TOL = 10
for all generalized eigenvalue problems.

about 2% to 3% edge eigenvalue problems and, compared to Algorithm II, 1% to 2%
additional constraints; see Tables 8.2, 8.3, and 8.4, and 8.5. There are also cases when
Algorithm Ib and II coincide; see, e.g., Table 8.5.

For irregularly partitioned domains the com-
putational overhead of Algorithm Ic, compared
to the “classic” approach in Algorithm III, might
be of up to 7% of extra eigenvalue problems and
up to 2-3 times as many constraints but is then
mostly mandatory for convergence and to reduce
the condition number from 1e + 05 to 10; see,
Tables 8.2, 8.3, and 8.4, and 8.5. However, com-
pared to Algorithm IT we can save up to 40% of
the constraints by using Algorithm Ic.

We conclude that the additional edge eigen-
value problems and the resulting constraints are
often necessary to obtain a small condition num-

. ber and even mandatory if pcg is expected to con-
a representative volume element (RVE). . . .
An irregular partitioning is used, High VOrge il a small number of iterations. The only
coefficients o = le + 06 are shown in configurations when Algorithm III converged in
dark purple, subdomains are shown in fewer than 100 iterations were cases when coeffi-
different colors in the background and  (ient jumps did not appear at subdomain edges,
by half-transparent slices. . . 5
or in small examples with fewer subdomains,
when the influence of the Dirichlet boundary was
still strong.

Figure 8.3: Coefficient distribution on

20




Composite material no. 1, irregular partitioning, and H/h = 6.

Algorithm Ia, Ib, and Ic Algorithm 11 Algorithm 11T
N K its | |U| HEeup K its | |U] K its |U|
a) | 8.70 | 34 | 642 2 (2.0%)
3% | b) | 870 | 34 | 642 1 (1.0%) 8.70 | 34 | 642 | 1.37e4+06 | 81 188
c) 8.72 | 34 | 405 1 (1.0%)
a) | 9.78 | 36 | 3323 | 25 (4.2%)
52 | b) | 9.78 | 36 | 3323 | 12 (2.1%) | 11.43 | 36 | 3316 | 5.54e+05 | 213 | 924
c) | 10.62 | 36 | 2092 | 12 (2.1%)
a) | 10.91 | 37 | 9388 | 65 (3.6%)
72 | b) | 10.91 | 37 | 9388 | 27 (1.5%) | 10.91 | 37 | 9350 | 1.22e+06 | 455 | 2672
c) | 13.48 | 39 | 6308 | 27 (1.5%)
Table 8.3: Compressible linear elasticity with E; = 1, E2 = 1le + 06. Coarse spaces for TOL = 10

for all generalized eigenvalue problems.

Composite material no. 2, irregular partitioning and H/h = 5.

Algorithm Ia, Ib, and Ic Algorithm I Algorithm IIT

N K its |U| H#Eeup K its K its |U|
a) | 14.12 | 37 | 1312 0 (0%)

33 b) | 14.12 | 37 | 1312 0 (0%) 14.12 37 | 1312 | 2.39e+05 | 463 523
¢ | 14.12 | 37 | 1114 0 (0%)
a) | 13.91 | 39 | 5675 23 (4.1%)

52 |'b) | 13.91 | 39 | 5675 | 19 (3.5%) 13.91 39 | 5639 | 5.46e+05 | 500 | 2261
c) | 13.92 | 39 | 4840 19 (3.5%)
a) | 14.58 | 42 | 15250 | 89 (5.5%)

73 b) | 14.58 | 42 | 15250 | 70 (4.4%) 1.81e4+05 | 84 | 15104 | 4.93e+05 | 500 | 6420
c) | 14.58 | 42 | 13336 | 70 (4.4%)
a) | 16.24 | 43 | 32083 | 165 (4.6%)

9% | b) | 16.24 | 43 | 32083 | 138 (3.9%) | 6.74e+03 | 66 | 31897 | 3.16e+05 | 500 | 13591
c) | 16.24 | 43 | 28372 | 138 (3.9%)

Table 8.4: Compressible linear elasticity with E; = 1, E9 = 1le 4+ 06. Coarse spaces for TOL = 10
for all generalized eigenvalue problems.

Composite material no. 2, irregular partitioning and H/h = 10.
Algorithm Ia, Ib, and Ic Algorithm I1 Algorithm IIT
N K its |U| #HEeup K its |U| K its |U|
a) | 9.86 | 35 | 4441 1 (1.0%)
3 | b) | 9.86 | 35 | 4441 0 (0%) 9.86 | 35 | 4441 | 3.46e+05 | 243 | 1101
c) | 11.25 | 36 | 3364 0 (0%)
a) | 9.60 | 35 | 10524 0 (0%)
4% | b) | 9.60 | 35 | 10524 0 (0%) 9.60 | 35 | 10524 | 8.88e+05 | 379 | 2583
c) | 11.57 | 37 | 7417 0 (0%)
a) | 9.90 | 36 | 22704 | 13 (2.0%)
52 | b) | 9.90 | 36 | 22704 | 2 (0.3%) | 9.90 | 36 | 22704 | 1.04e+06 | 500 | 5490
c) | 11.12 | 37 | 17219 | 2 (0.3%)

Table 8.5: Compressible linear elasticity with E; = 1, E2 = 1le + 06. Coarse spaces for TOL = 10
for all generalized eigenvalue problems.
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Representative Volume Element with E; = 210, E2 = 210000,
regular and irregular partitioning, N = 8> and H/h = 4.

Algorithm Ia, Ib, and Ic Algorithm I Algorithm IIT
part. K its | |U]| H#Eeup K its | |U]| K its | |U]
a) | 10.04 | 34 | 5950 | 2352 (63.6%)
Teg. b) | 10.04 | 34 | 5950 736 (35.4%) 10.04 | 35 | 5246 | 244.60 | 80 | 1066
¢) | 10.06 | 34 | 4769 | 736 (35.4%)
a) | 13.97 | 37 | 700 | 114 (5.6%)
irreg. | b) | 13.97 | 37 | 700 27 (1.4%) 13.97 | 37 | 689 | 361.85 | 98 | 344
c) | 18.97 | 38 | 579 27 (1.4%)

Table 8.6: Compressible linear elasticity. Coarse spaces for TOL = 10 for all generalized eigenvalue
problems.

8.2. Steel microstructure. In this section, we will consider a representative
volume element (RVE) representing the microstructure of a modern steel; see Fig-
ure 8.3.

The RVE has been obtained from the one in [42, Fig. 5.5] by resampling; see
also the discussion below. As in [42], we use v = 0.3, E; = 210 and E; = 210000 as
(artificial) material parameters. There, about 12% of the volume is covered by the
high coefficient E5. We have resampled the RVE from 64 x 64 x 64 to 32 x 32 x 32
voxels. Here, the coefficient was set to Fs if at least three of the original voxels had a
high coefficient. This procedure guarantees that the ratio of high and low coeflicients
is not changed.

We see from our results in Table 8.6 that Algorithms Ia, Ib, and IT do behave quite
the same. The amount of extra work for our modified coarse space in Algorithms Ia
and Ib compared to Algorithm II is small. Algorithm Ic uses a reduced coarse space
that still guarantees small condition numbers and convergence within a comparable
number of pcg iterations while the smallest coarse space, represented by Algorithm
ITI, gives larger condition numbers and iteration counts.

8.3. Randomly distributed coefficients. We turn towards randomly dis-
tributed coeflicients and now perform 100 runs with different coefficients for every
configuration. We consider a linear elastic and compressible material on a discretiza-
tion of the unit cube, i.e., a structured fine mesh consisting of cubes each containing
five tetrahedra. We enforce zero Dirichlet boundary conditions just for the face with
x = 0 and zero Neumann boundary conditions elsewhere. We apply the volume force
f:=10.1,0.1,0.1]7. We have seen in the preceding examples that the coarse space of
Algorithm Ib only differs to a minor degree or not at all from that of Algorithm Ia.
In the conference proceedings [28, Table 2], it has been reported for heterogeneous
diffusion problems with a random coefficient distribution that Algorithms Ia, Ib, and
Ic all yield essentially the same results. The same holds for the case of linear elastic-
ity with randomly distributed coefficients considered here. Therefore, we will restrict
ourselves to present results for Algorithms Ib, IT, and III in this section.

Besides N, we vary the number of tetrahedra with a high coefficient. We test a
50/50 and 20/80 ratio of high and low coefficients; see Figure 8.4. In Tables 8.7 and
8.8, we present the arithmetic mean T, the median T and the standard deviation o for
different numbers N of subdomains with H/h = 5.

Again, we see that discarding the edge constraints resulting from face eigenvalue
problems can result in large condition numbers and iteration counts; see the results for
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a) 50% high coefficients. a) 20% high coefficients.

Figure 8.4: Randomly distributed coefficients on 2 with irregular partitioning. High coefficients
(E2 = 1e + 06) are shown in dark purple in the picture, subdomains shown in different colors in the
background and by half-transparent slices; visualized for N = 8 and H/h = 5. We perform 100 runs
for each setting.

Algorithm IIT in Tables 8.7 and 8.8. Nonetheless, keeping these edge constraints does,
again, not always guarantee a small condition number and fast convergence, as the
results for Algorithm II show. The number of extra eigenvalue problems for Algorithm
Ib is either 0% or 4% for our examples. Since there are no egde eigenvalue problems
for N = 27 subdomains Algorithm Ib and II coincide in that case. Moreover, since the
edge eigenvalue problems always produce fewer than 1% of additional constraints the
computational overhead for Algorithm Ib is quite moderate compared to Algorithm
IT; see Tables 8.7 and 8.8. As the median shows for N € {64,125} in Table 8.7 and
N = 64 in Table 8.8, the majority of problems is well solved by the coarse space of
Algorithm II. However, the arithmetic mean points out that there are several problems
with a high condition number if this coarse space is used. Let us just note that “several
problems” for N = 64 subdomains and Table 8.8 even means 46 of 100 runs. Even
worse, for N = 125 subdomains, Algorithm II exhibited in 21 and in 87 of 100 runs a
condition number of at least 1le 4+ 04, as well as in 21 and in 33 cases even a condition
number of le + 05 or higher; see Tables 8.7 and 8.8.

We see that, by investing fewer than 1% of additional constraints resulting from
our edge eigenvalue problems, our Algorithm Ib can guarantee a condition number
around TOL. This shows that this additional amount of work is worthwile and can
guarantee a small condition number and convergence within a reasonable number of
pcg iterations.

8.4. Almost incompressible linear elasticity. In this section, we consider
a linear elastic material which consists of compressible and almost incompressible
parts. The compressible material parts have a Poisson ratio of v = 0.3 and for the
almost incompressible parts we consider different values of Poisson’s ratio with 0.45 <
v < 0.5. We also consider different distributions of Young’s modulus in the material,
allowing for large coefficient jumps. Let us note that such large coefficient jumps in
Young’s modulus and simultaneously letting Poisson’s ratio v almost approach the
incompressible limit 0.5 for some parts of the material, can lead to very ill-conditioned
local matrices K gg.

As before, we consider the unit cube but we slightly increase the volume force f =

23



Randomly distributed coefficients with 50% high and 50% low coefficients,
irregular partitioning, and H/h = 5.
Algorithm Ib Algorithm I1 Algorithm II1
N K its |U| H#Eeup K its |U| K its |U|
T | 10.20 | 35.17 | 180.94 0 (0%) 10.20 35.17 | 180.94 | 7.53e+05 | 135.06 | 59.65
3% | z | 10.09 35 179.5 0 (0%) 10.09 35 179.5 | 6.89e+405 134 59
o 0.68 0.67 24.12 - 0.68 0.66 2412 | 2.19e+05 | 27.39 7.76
T | 10.80 | 36.09 | 383.77 | 9 (3.7%) | 6.85e+04 | 37.52 | 382.58 | 1.02e4+06 | 222.96 | 137.37
43 | 7 | 10.53 36 381 9 (3.7%) 10.84 36 380 1.01e4-06 221 137
o 1.00 0.51 29.10 - 1.83e+05 | 3.74 29.01 | 2.31e+05 | 30.70 11.43
T | 11.38 | 36.70 | 721.46 | 23 (4.1%) | 9.42e4+05 | 39.35 | 719.27 | 8.54e+05 | 276.70 | 243.58
52 | Z | 11.13 37 717 23 (4.1%) 11.62 37 717 8.12e+05 | 269.5 241.5
o 1.20 0.72 54.54 - 2.13e+05 | 5.64 54.47 | 1.90e+05 | 39.56 17.85
Table 8.7: Compressible linear elasticity with E; = 1, E2 = 1le + 06. Coarse spaces for TOL = 10
for all generalized eigenvalue problems.
Randomly distributed coefficients with 20% high and 80% low coefficients,
irregular partitioning, and H/h = 5.
Algorithm Ib Algorithm 11 Algorithm IIT
N K its |U| H#Eeup K its |U| K its |U|
T | 8.40 | 30.74 | 1311.94 0 (0%) 8.40 30.74 | 1311.94 | 3.89e+05 | 486.03 | 499.76
33|z | 8.38 31 1311.5 0 (0%) 8.38 31 1311.5 | 3.78e+05 500 501
o | 0.61 0.79 66.14 - 0.61 0.79 66.14 1.21e+05 | 24.67 33.36
T | 9.01 | 32.68 | 2680.69 | 9 (3.7%) | 6.93e+04 | 39.58 | 2663.58 | 5.57e+05 500 1100.85
42| 7| 9.04 33 2678 9 (3.7%) | 2.90e+03 38 2661.5 | 5.22e+05 500 1103
o | 0.50 0.63 81.22 - 1.16e+05 | 8.04 81.16 1.85e+4-05 0 42.15
T | 9.12 | 32.96 | 6015.56 | 23 (4.1%) | 9.39e+04 | 58.14 | 5969.77 | 4.98e+05 500 2360.64
55 | z | 9.08 33 6009 23 (4.1%) | 7.12e+04 55 5959.5 | 4.62e+05 500 2359
o | 0.56 0.61 148.91 - 9.33e+04 | 18.12 | 148.19 | 1.38e+405 0 70.92
Table 8.8: Compressible linear elasticity with E; = 1, E9 = 1le 4+ 06. Coarse spaces for TOL = 10

for all generalized eigenvalue problems.

[-1,—1,—1]7, pushing the domain towards the Dirichlet boundary. We use inf-sup
stable Q2 — Py finite elements for both, the compressible and the almost incompressible

parts.

We present numerical results for three different material distributions.

In our first set of experiments, we consider a distribution of the Poisson ration
in layers of v1 and v5. The layers have a thickness of two elements in z3 direction.

Here,

vy takes different values whereas vo = 0.3. We have E = 1 on the complete

domain ). For all three algorithms, the condition numbers and iteration counts are
uniformly bounded with respect to vy approaching 0.5. All algorithms also yield
condition numbers and iteration counts of a comparable size; see Table 8.9. For the
material distributions considered in this example, Algorithm III seems to be sufficient.

The second example will be the composite material no. 2 from Section 8.1. Here,
we use E; =1 and Eg = 1e + 03. We consider a variable Poisson ratio v; € [0.3,0.5)
for all finite elements with E; = 1 and a fixed Poisson ratio vo = 0.3 for those finite
elements with E9 = le 4+ 03. Table 8.10 indicates uniformly bounded condition num-
bers and iteration counts for Algorithms Ia and II. For Algorithm III, the condition
number and the iteration counts still seem to bounded but at a higher level. Algo-
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Layered distribution of compressible and almost incompressible materials,
irregular partitioning, H/h =5, and N = 43,

Algorithm Ia Algorithm 1T Algorithm IIT
vy K its | |U]| H#Eeup K its | |U] K its | |U|
0.45 6.83 | 27 | 3804 | 15 (4.8%) | 6.83 | 27 | 3800 | 7.72 | 29 | 712
0.499 7.11 | 28 | 4042 | 15 (4.8%) | 7.11 | 28 | 4038 | 8.41 | 31 | 757
0.49999 7.12 | 28 | 4051 | 15 (4.8%) | 7.12 | 28 | 4047 | 8.62 | 31 | 759
15 ( )
15 ( )

0.4999999 7.12 | 28 | 4051 4.8% 7.12 | 28 | 4047 | 8.62 | 31 | 759
0.499999999 | 7.12 | 28 | 4051 4.8% 7.12 | 28 | 4047 | 8.62 | 32 | 759

Table 8.9: Almost incompressible linear elasticity with v as given, vo = 0.3, E = 1 constant.
Coarse spaces for TOL = 10 for all generalized eigenvalue problems.

Composite material no. 2, irregular partitioning, H/h = 5, and N = 4°.

Algorithm Ia Algorithm 11 Algorithm 11T

vy K its | |U| #Eeup K its | |U] K its |U|

0.45 9.04 | 31 | 6560 | 15 (4.8%) | 9.04 | 31 | 6556 | 12.27 | 37 | 1239
0.499 13.08 | 34 | 7330 | 15 (4.8%) | 13.08 | 34 | 7326 | 34.71 | 50 | 1402
0.49999 8.84 | 31 | 7571 | 15 (4.8%) | 8.84 | 31 | 7564 | 589.80 | 98 | 1460
0.4999999 8.80 | 31 | 7576 | 15 (4.8%) | 8.80 | 31 | 7569 | 796.50 | 106 | 1461
0.499999999 | 8.80 | 31 | 7576 | 15 (4.8%) | 8.80 | 31 | 7569 | 799.90 | 120 | 1461

Table 8.10: Almost incompressible linear elasticity with v as given, vo = 0.3, E; = 1, E2 = 1le+03.
Coarse spaces for TOL = 10 for all generalized eigenvalue problems.

rithms Ia and II perform as in the compressible case but at the cost of a larger coarse
space.

In our third set of experiments, we consider an almost incompressible material
with both, » and E = 1 constant on the complete domain. Table 8.11 shows that
this becomes a hard problem for Algorithm III and also for Algorithm II. With v
approaching the incompressible limit, the condition number of the mentioned algo-
rithms will be several magnitudes larger than this of Algorithm Ia. In contrast to
the other algorithms, Algorithm Ia can guarantee a small condition number and an
almost constant number of pcg iterations.

REMARK 3. Note that the automatic coarse space constructed here for the almost
incompressible case is slightly larger than the a priori coarse spaces constructed in [17]
and [19], which introduce only a single (additional) constraint for each subdomain in
2D to cope with almost incompressible elasticity [17], or where all face constraints can
be summed to a single constraint in 3D [19].

8.5. Heuristic approach on reducing the number of eigenvalue problems
and constraints based on the residual. We now consider the heuristic approach
described in Section 7.3 to reduce the number of (edge) eigenvalue problems. We apply
this approach to our Algorithm Ib for compressible elasticity and to Algorithm Ia for
almost incompressible test problems. Note that this approach can equally be adopted
for the coarse spaces of Algorithms Ic, II, or III. We report the number of eigenvalue
problems solved and denoted by “#EVPy”, as well the number of eigenvalue problems
discarded by our heuristic approach of Section 7.3., denoted by “#EVPgisc_g7.3”; see
Tables 8.12, 8.13, and 8.14. For the computation of the residual r (see Section 7.3),
we simply use A = 0. For the cases where Algorithm Ib was used, we also report the
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Homogeneous material, irregular partitioning, H/h = 5, and N = 4°.

Algorithm Ia Algorithm IT Algorithm IIT
v K its | |U]| #Eeup K its | U] K its | |U|
0.45 6.52 | 27 | 4085 | 15 (4.8%) 6.52 27 | 4081 7.69 29 764
0.499 7.34 | 30 | 4736 | 15 (4.8%) 7.34 29 | 4732 22.17 43 | 892
0.49999 6.81 | 28 | 4909 | 15 (4.8%) 12.18 29 | 4900 | 1.98e+03 | 88 | 933
0.4999999 6.81 | 28 | 4913 | 15 (4.8%) | 1.06e+03 | 38 | 4903 | 1.97e4+05 | 119 | 934
0.499999999 | 6.81 | 28 | 4913 | 15 (4.8%) | 1.06e+05 | 59 | 4903 | 1.97e+07 | 144 | 934

Table 8.11: Almost incompressible linear elasticity with v as given, E = 1 constant. Coarse spaces
for TOL = 10 for all generalized eigenvalue problems.

Composite material no. 1, irregular partitioning, and H/h = 6.
T2 = 0.01, 7oo = 1072
N | Amin | Amas | its | U] | #EVPy | #EVPyisc_s7.3 | #EVPaisc_s7.1.2

33 1 8.79 | 35 | 629 63 36 1
53 1 15.71 | 40 | 3229 312 267 13
7 1 120.10 | 72 | 9095 937 812 38

72 = 0.001, 700 = 1072
N | Mnin | Amaz | its | |U| | #EVPy | #EVPyisc_s7.3 | #EVPyisc_s7.1.2

33 1 8.79 | 35 | 632 64 35 1
53 1 10.63 | 37 | 3260 326 253 13
73 1 15.50 | 40 | 9269 998 751 38

Table 8.12: Compressible linear elasticity with E; = 1, E2 = le + 06. Coarse space of Algorithm
Ib with heuristically reduced number of eigenvalue problems according to Section 7.3 using TOL = 10
for all generalized eigenvalue problems. For the results without heuristic of Section 7.3, see Table 8.3.

number of (edge) eigenvalue problems discarded by this algorithm as #EVPgisc s7.1.2;
cf. Section 7.1.2. In this section, we report Amin and Ap,q. instead of k.

We also consider different values of 75, namely 7o € {0.01,0.001}, each with
Too = 1072. Using a larger value of 73, e.g., setting 7o = 0.1, does not give acceptable
results anymore in about half of our test cases. We refrain from reporting the details
here.

The choice 7o, = 1072 is heuristic and motivated from initial testing. The use
of 7o and 7o is motivated by the fact that localized high peaks and widespread
heterogeneities with a (10 times) lower value should both trigger the adaptivity.

For our composite material no. 1 we observe good or acceptable behavior of our
heuristics, and up to roughly 50% of the eigenvalue problems are saved; see Table 8.12.
Nevertheless, to keep the condition number at the order of TOL, we have to use
9 = 0.001.

We again turn towards randomly distributed cofficients which turned out to be the
most challenging problem in the previous sections. For the corresponding Table 8.13,
we additionally report that with 75 = 0.001 the condition number was low in all runs,
and the iteration number did not exceed 40. The heuristics thus worked well. However,
Algorithm Ib was identical to Algorithm Ia in 99 of 100 cases for the randomized
coeflicients, since they are highly oscillatory, i.e., in this setting, it is very likely that
heterogeneities are present at all edges.

From our results in Table 8.14 we see that we can save a substantial number
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Randomly distributed coefficients with 20% high and 80% low coefficients,
irregular partitioning, and H/h = 5.

T2 = 0.001, Too = 1072

N Amin | Amaz its |U]| #EVPy | #EVPaisc_s7.3 | #EVPaisc_s7.1.2
x 1 9.16 | 32.97 | 6010.63 530.42 24.57 0.01

5 | 7 1 9.09 33 6005 530.5 24.5 0
o 0 0.55 0.64 149.97 4.35 4.33 0.10

Table 8.13: Compressible linear elasticity with E; = 1, E2 = le + 06. Coarse space of Algorithm
Ib with heuristically reduced number of eigenvalue problems according to Section 7.3 using TOL = 10
for all generalized eigenvalue problems. For the results without heuristic of Section 7.3, see Table 8.8.

Composite material no. 2, irregular partitioning, H/h =5, and N = 4°.
72 = 0.01, 7oo = 1072
V1 Amin Amaz its |U| #EVPy #EVPdiscisTS
0.45 1 30.09 | 55 | 4038 93 217
0.499 1 67.27 | 56 | 6535 253 57
0.49999 1 37.98 | 50 | 6988 272 38
0.4999999 1 38.00 | 50 | 6993 272 38

Table 8.14: Almost incompressible linear elasticity with variable v; as given, vo = 0.3, E; = 1,
E2 = le + 03. Coarse space of Algorithm Ia with heuristically reduced number of eigenvalue
problems according to Section 7.3 using TOL = 10 for all generalized eigenvalue problems. For the
results without heuristic of Section 7.3, see Table 8.10.

of eigenvalue problems when v is still far away from the incompressible limit. As v
approaches the limit the computational savings are more modest.

8.6. Efficiently solving the eigenvalue problems. The numerical solution
of the eigenvalue problems can be expensive but their “exact” solution is required by
the current theory. Additionally, the construction of the operators of the eigenvalue
problem can also be expensive if an eigensolver is used that needs the matrices in
explicit form.

However, an approximation of the extreme eigenvectors by an iterative method is
sufficient in practice. This was already reported to be successful for adaptive BDDC
using LOBPCG; see [56]. In Tables 8.15 and 8.16, we show results for H/h = 15 using
an iterative eigenvalue problem solver. We use an implementation of LOBPCG (see
[41, 40]) with block size 10, preconditioned by a Cholesky decomposition of the right
hand side of the eigenvalue problem. We conduct a given number of maximum itera-
tions as indicated in the tables. If the smallest computed eigenvalue of the considered
block exceeds the tolerance TOL, we proceed with another pass of the algorithm and
search for 10 new eigenvectors in a subspace orthogonal to the previously computed
eigenvector approximations. All approximate eigenvectors corresponding to approxi-
mate eigenvalues above TOL will be added to the coarse space.

In Table 8.15, we consider a variable number of subdomains N € {33, 43 53}
and use a single iteration of LOBPCG. This already seems to work acceptably. For
N = 3% subdomains, we also consider different values for the maximum iteration
count, i.e., {1,2,5,10,200} and with a requested tolerance for convergence of the
LOBPCG solver of 1le — 5; see Table 8.16. We see that, in terms of resulting FETI-
DP iterations, exceeding a number of 5 LOBPCG iterations does not seem to be
worthwhile. Note that the METIS decomposition for N = 33 subdomains here does
not lead to any edge eigenvalue problem. Therefore, Algorithm Ia, Ib and II behave
identically.
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Composite material no. 1, irregular partitioning, and H/h = 15.

Algorithm Ia, Ib, and Ic Algorithm I1 Algorithm I11

N K its |U| H#Eeup K its |U| K its |U|
a) | 26.74 | 50 | 2360 | 0 (0%)

3% | b) | 26.74 | 50 | 2360 0 (0%) | 26.74 | 50 | 2360 | 8.028e+05 | 150 | 462
c) | 26.77 | 50 | 1228 | 0 (0%)
a) | 28.37 | 54 | 4472 2 (0.7%)

4% | b) | 28.37 | 54 | 4472 | 0(0%) | 28.37 | 54 | 4472 | 4.315e+05 | 215 | 863
c) | 28.39 | 55 | 1962 | 0 (0%)
a) | 43.87 | 61 | 10178 | 8 (1.2%)

5 | b) | 43.87 | 61 | 10178 | 0 (0%) | 43.87 | 61 | 10178 | 6.86e+05 | 288 | 1941
c) | 43.93 | 62 | 5334 0 (0%)

Table 8.15: Compressible linear elasticity with E; = 1, E2 = 1le + 06. Coarse spaces for TOL = 10
for all generalized eigenvalue problems. Solution of the local eigenvalue problems by LOBPCG with
1 iteration.

Composite material no. 1, irregular partitioning, N = 3° and H/h = 15.

Algorithm Ia, Ib, and Ic Algorithm I1 Algorithm IIT

LOBPCG max. its K its | |U]| #Sevp K its | U] K its | |U|
a) | 26.74 | 50 | 2360 | 0 (0%)

1 b) | 26.74 | 50 | 2360 | 0 (0%) | 26.74 | 50 | 2360 | 8.03e4+05 | 150 | 462
c) | 26.77 | 50 | 1228 | 0 (0%)
a) | 17.65 | 41 | 2623 | 0 (0%)

2 b) | 17.65 | 41 | 2623 | 0 (0%) | 17.65 | 41 | 2623 | 7.76e+05 | 123 | 505
) | 17.65 | 42 | 1322 | 0 (0%)
a) | 10.04 | 37 | 2762 | 0 (0%)

5 b) | 10.04 | 37 | 2762 | 0 (0%) | 10.04 | 37 | 2762 | 7.71e+05 | 126 | 531
c) | 12.86 | 38 | 1374 | 0 (0%)
a) | 12.61 | 38 | 2782 | 0 (0%)

10 b) | 12.61 | 38 | 2782 | 0 (0%) | 12.61 | 38 | 2782 | 7.70e+05 | 128 | 541
c) | 12.85 | 40 | 1396 | 0 (0%)
a) | 11.55 | 38 | 3108 | 0 (0%)

200 b) | 11.55 | 38 | 3108 | 0 (0%) | 11.72 | 38 | 3108 | 7.70e+05 | 113 | 686
b) | 12.86 | 38 | 1665 | 0 (0%)

Table 8.16: Compressible linear elasticity with E; = 1, E2 = 1le + 06. Coarse spaces for TOL = 10
for all generalized eigenvalue problems. Solution of the local eigenvalue problems by LOBPCG with
indicated number of maximum iterations.

9. Conclusion. We have presented an adaptive coarse space approach for FETI-
DP methods (Algorithm Ia) including a condition number bound for general coeffi-
cient jumps inside subdomains and across subdomain boundaries as well as almost
incompressible elasticity in 3D. The bound only depends on geometrical constants
and a prescribed tolerance from local eigenvalue problems. Our approach is based
on the classic adaptive approach from [44] but we use a small number (fewer than 5
percent) of additional edge eigenvalue problems. Our experiments support our the-
ory and show that the new method is able to cope with situations where the classic
approach fails. Moreover, we have given two techniques on how to reduce the number
of eigenvalue problems and constraints from Algorithm Ia which work very well, i.e.,
Algorithm Ib and Ic. We have seen in our numerical experiments that the classic
coarse space of [44] (Algorithm IIT) can be sufficient if coefficient jumps do only occur
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at subdomain faces. However, if jumps are present across or along subdomain edges,
in general, neither a small condition number nor a low count of Krylov iterations
(or even convergence) can be guaranteed by Algorithm III, which does not use any
edge constraints. For difficult coefficient distributions, at least the edge constraints
resulting from face eigenvalue problems should be added to the coarse space. The
resulting approach (Algorithm IT) then can cope with a larger number of test prob-
lems. However, only Algorithms Ia, Ib, and Ic have been able to guarantee a low
condition number for all our test cases. Although only Algorithm Ia is covered by
our provable bound, Algorithm Ib performs almost identically. Algorithm Ic performs
still comparably but can also save a considerable number of constraints; e.g., up to
40%. In simple cases, where Algorithm III is already successful, Algorithm Ic indeed
reduces to Algorithm ITI. Moreover, our experiments show that the condition number
can quite precisely be controlled by the tolerance TOL even if the reduction strate-
gies of Section 7.1.2 (Algorithm Ib) or, additionally, Section 7.2 are used (Algorithm
Ic). For our problems from almost incompressible elasticity, among Algorithms Ia,
11, and III, only Algorithm Ia performed well for all our test problems. For regular
decompositions, the number of edge eigenvalue problems in Algorithm Ia is quite high,
but can be reduced considerably by switching to Algorithms Ib and Ic. For irregu-
lar decompositions, which is the more relevant case, the number of additional edge
eigenvalue problems to be computed by Algorithm Ia is often only in a low single-
digit percentage range and can further be reduced by switching to Algorithm Ib and
Ic. Compared to Algorithm II, the number of additional constraints in Algorithm Ia
and Ib is typically small, i.e., for our test problems, the mean is only between 1%
to 3% of additional constraints. Moreover, compared to Algorithm II, Algorithm Ic
reduces the number of edge constraints from face eigenvalue problems. Comparing the
computational overhead of Algorithms Ia, Ib, and Ic to Algorithm III is in some way
difficult since the additional constraints are mostly necessary to obtain convergence.
Considering the computational overhead for the solution of the eigenvalue problems,
we also showed that already an application of an iterative eigenproblem solver with
just a few iterations results in a robust coarse space. Our heuristic strategy to reduce
the number of eigenvalue problems (see Section 7.3) can save a substantial amount
of computational work but requires some tuning of tolerances. In our numerical ex-
periments, selecting a tolerance 0.001 < 75 < 0.01 with 7o, = 107y saved work while
keeping the algorithm stable and reliable.
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