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For second-order elliptic partial differential equations large discontinuities in the coefficients yield ill-conditioned stiffness
matrices. The convergence of domain decomposition methods (DDM) can be improved by incorporating (numerically com-
puted) local eigenvectors into the coarse space. Different adaptive coarse spaces for DDM have been constructed and used
successfully. For two-level Schwarz, FETI-1 and BDD methods, adaptive coarse spaces with a rigorous theoretical basis are
known for 2D and 3D. Although successfully in use for almost a decade, a theory for adaptive coarse spaces for FETI-DP
and BDDC was lacking. While the problem was recently settled for 2D, the estimate for the 3D adaptive algorithm required
improved coarse spaces. We give an brief overview of the literature, i.e., the different known approaches, and show numerical
results for a specific adaptive FETI-DP method in 3D, where the condition number bound could only recently be proven.
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Domain decomposition methods (DDM) are fast parallel iterative solution methods for the solution of implicit linear or
linearized systems from the discretization of partial differential equations (PDEs). The convergence theory of these methods
typically relies on a (global) condition number bound constructed from local theoretical estimates for finite element functions.
Recently, new approaches have gained interest where these estimates are replaced by computable spectral bounds, e.g., from
discrete local eigenvalue problems. A corresponding enrichment of the coarse problem then yields a global bound which
only depends on a user-defined tolerance and some geometric bounds, e.g., the maximum number of edges or faces of a
subdomain. Thus, convergence is not affected by ill-conditioning, e.g., from heterogeneities or (in some approaches) from
almost incompressibility.

Already in [2], spectral information, i.e., the eigenvectors corresponding to the smallest eigenvalues of subdomain matrices,
has been used with Neumann-Neumann methods, heuristically. In 2007, in [17], adaptive coarse spaces for FETI-DP and
BDDC domain decomposition methods were proposed for 2D problems, at this time without a theoretical bound. Later,
an adaptive coarse space for additive Schwarz methods was proposed [7, 8], based on eigenvalue problems on complete
subdomains, replacing a Poincaré estimate. In [18], the strategy from [17] was extended to 3D and used very successfully, also
in a parallel implementation. Later, coarse spaces based on local Dirichlet-to-Neumann maps were introduced for Schwarz
preconditioners [6]. Then, for FETI-1 and BDD methods, a related adaptive approach was introduced [20]. At about the
same time, published in [15], an adaptive approach for FETI-DP and BDDC methods was introduced by replacing a Poincaré
inequality and an extension theorem (on edges) by eigenvalue problems; see [13] for the complete theory in 2D.

Only recently, in 2015, for the first time a rigorous condition number estimate was then proven in [14] for the widely
used adaptive approach from [17], for 2D problems. Also in [14], a comparison of three adaptive coarse spaces for 2D
problems, i.e., those of [17], [4, 12], and [13, 15], was provided, discussing their strengths and weaknesses, and considering
their performance in numerical experiments. Then, but for an improved coarse space, in [11], a condition number estimate
for 3D was shown for the first time; see also a remark in [5]. Moreover, strategies were proposed to reduce the number of
eigenvalue problems. The improved coarse space was established by using an additional enrichment by certain eigenvectors
on edges and is the first theory publically available for adaptive FETI-DP or BDDC methods in 3D.

For BDDC and FETI-DP, an adaptive coarse space for two dimensional problems has also recently been introduced in [10].
Recently, extensive new work on adaptive coarse spaces for BDDC in three dimensions has been presented; see the technical
reports [1, 3, 19]. For Schwarz, see the recent report [9]. An overview of adaptive coarse spaces for BDDC was also given
very recently, in a technical report [5].

At the center of the condition number estimates for FETI-DP and BDDC methods is the spectrum of the PD = BT
DB

operator; for more details, see [21]. Adaptive approaches can directly consider the PD operator, using eigenvalue problems
after localization. Alternatively, following standard theory, the spectrum of the PD operator can be estimated by, e.g., replacing
inequalities of Poincaré type as well as extension theorems by computable bounds. In this short paper, we consider our
adaptive FETI-DP approach from [11] and apply it to linear elasticity on Ω = [0, 1]3 with zero Dirichlet boundary conditions
on the face with x = 0. Then, let f := [0.1, 0.1, 0.1]T , ν = 0.3, and E ∈ {1, 1e6}. We could equally consider almost
incompressible linear elasticity problems discretized by inf-sup stable finite elements or heterogeneous diffusion problems.
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FETI-DP w/ Vertex + Edge Average Coarse Space FETI-DP w/ Extended Vertex + Adaptive Coarse Space [11]

N |λ| |Π| cond iter |Π| |U | cond iter
43 20,991 2,367 1.10e+06 >2,000 2,517 1,761 9.74 36
63 80,199 9,168 1.57e+06 >2,000 10,110 5,514 10.04 36

Table 1: Linear elastic composite material with N2/3 many stiff beams spanning from the face with x = 0 to the face with x = 1;
discretized by H/h = 6 and P1 finite elements. Since the regular case can be solved already reliably by the classic algorithm of [18], we
here use an (irregular) METIS decomposition and follow the new approach in [11] with TOL = 10.

For the FETI-DP method, we decompose Ω into N nonoverlapping subdomains Ωi, i = 1, . . . , N , where Γ is the interface.
The FETI-DP method is based on the system Fλ = d with F = BS̃−1BT and an initial coarse space defined by an operator
S̃ΠΠ acting on the primal variables ũΠ. In our case, the operator S̃ΠΠ is related to, at least, all vertex variables; cf. Table 1.
We also demand that every curved edge in 3D has three primal vertex variables, to avoid rigid body (hinge) modes around
the edges; see also [17]. Other approaches are also possible. By introducing an adequate scaling as well as extension and
restriction operatorsRΓ, RT

Γ
, we can also use the standard Dirichlet preconditioner M̂−1 = BDRT

Γ
SRΓB

T
D . When estimating

the Rayleigh quotient of the preconditioned system, i.e., 〈Fλ, M̂−1Fλ〉 ≤ C〈Fλ, λ〉, we see that the PD = BT
DB operator

comes into play since the left hand side consists of an inner product defined by PT
DRT

Γ
SRΓPD; see, e.g., [11].

We consider generalized local eigenvalue problems on faces shared by subdomains (see [17,18] or, in our notation, in [14])
and also on edges, which is crucial to obtain the theoretical bound in 3D; see [11]. For a closed face or edge shared by
two subdomains Ωi and Ωj , we then introduce localized versions of operators of the preconditioned FETI-DP system. The
local jump operator Bij consists of all the rows of B containing exactly one +1 and one −1. On the other hand, BDij

will
be the scaled version of Bij restricting the global scaling to either the closed face or edge under consideration. The matrix
Sij = blockdiag(Si, Sj) is a blockdiagonal matrix of the uncoupled local Schur complements on the interfaceΓ, and we define
the bilinear form sij(·, ·) := (·, Sij ·) for vij × wij with vij , wij ∈ Wi ×Wj . The local generalized eigenvalue problems can
then be expressed by the variational formulation: Find wk

ij ∈ (kerSij)
⊥, such that

sij(B
T
Dij

Bijvij , B
T
Dij

Bijw
k
ij) = µk

ijsij(vij , w
k
ij) ∀vij ∈ (kerSij)

⊥, (1)

and we use the eigenvectors wk
ij for µk

ij ≥ TOL in order to compute the coarse space elements (constraints)
uk
ij := BDij

SijB
T
Dij

Bijw
k
ij . This approach is different from [13], where two types of eigenvalue problems were used.

Then, coarse elements defined on the closure of a face will be split such that all the constraints are defined on disjunct geomet-
rical entities, i.e., either on open faces or edges. Let us note that there are strategies available to reduce the size of the coarse
space presented here while keeping a reliable algorithm. These strategies may discard certain eigenvalue problems and/or
constraints; cf. [11].

The adaptively computed constraints are enforced by a deflation approach, in our case, the balancing preconditioner. Other
approaches are also possible. For balancing and deflation in the context of FETI-DP and BDDC, see [16]. Our numerical
results show that the condition number can successfully be controlled for our heterogeneous problems in 3D, in accordance
with the theory [11].
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