des Module Reference

Functions/Subroutines

ret stream (type keyset, type message, type encrypt, type mode, type iv, optional kbits=64)
ret createKeys (type key, optional weak=0)

Variables

variable keys
variable spfunction2 [list 0x80108020 0x80008000 0x8000 0x108020 0x100000 0x20 0x80100020 0x80008020 0x80000020 0x80108020 0x80108000 0x80000000 0x80008000 0x100000 0x20 0x80100020 0x108000 0x100020 0x80008020 0 0x80000000 0x8000 0x108020 0x80100000 0x100020 0x80000020 0 0x108000 0x8020 0x80108000 0x80100000 0x8020 0 0x108020 0x80100020 0x100000 0x80008020 0x80100000 0x80108000 0x8000 0x80100000 0x80008000 0x20 0x80108020 0x108020 0x20 0x8000 0x80000000 0x8020 0x80108000 0x100000 0x80000020 0x100020 0x80008020 0x80000020 0x100020 0x108000 0 0x80008000 0x8020 0x80000000 0x80100020 0x80108020 0x108000]
variable spfunction3 [list 0x208 0x8020200 0 0x8020008 0x8000200 0 0x20208 0x8000200 0x20008 0x8000008 0x8000008 0x20000 0x8020208 0x20008 0x8020000 0x208 0x8000000 0x8 0x8020200 0x200 0x20200 0x8020000 0x8020008 0x20208 0x8000208 0x20200 0x20000 0x8000208 0x8 0x8020208 0x200 0x8000000 0x8020200 0x8000000 0x20008 0x208 0x20000 0x8020200 0x8000200 0 0x200 0x20008 0x8020208 0x8000200 0x8000008 0x200 0 0x8020008 0x8000208 0x20000 0x8000000 0x8020208 0x8 0x20208 0x20200 0x8000008 0x8020000 0x8000208 0x208 0x8020000 0x20208 0x8 0x8020008 0x20200]
variable spfunction4 [list 0x802001 0x2081 0x2081 0x80 0x802080 0x800081 0x800001 0x2001 0 0x802000 0x802000 0x802081 0x81 0 0x800080 0x800001 0x1 0x2000 0x800000 0x802001 0x80 0x800000 0x2001 0x2080 0x800081 0x1 0x2080 0x800080 0x2000 0x802080 0x802081 0x81 0x800080 0x800001 0x802000 0x802081 0x81 0 0 0x802000 0x2080 0x800080 0x800081 0x1 0x802001 0x2081 0x2081 0x80 0x802081 0x81 0x1 0x2000 0x800001 0x2001 0x802080 0x800081 0x2001 0x2080 0x800000 0x802001 0x80 0x800000 0x2000 0x802080]
variable spfunction5 [list 0x100 0x2080100 0x2080000 0x42000100 0x80000 0x100 0x40000000 0x2080000 0x40080100 0x80000 0x2000100 0x40080100 0x42000100 0x42080000 0x80100 0x40000000 0x2000000 0x40080000 0x40080000 0 0x40000100 0x42080100 0x42080100 0x2000100 0x42080000 0x40000100 0 0x42000000 0x2080100 0x2000000 0x42000000 0x80100 0x80000 0x42000100 0x100 0x2000000 0x40000000 0x2080000 0x42000100 0x40080100 0x2000100 0x40000000 0x42080000 0x2080100 0x40080100 0x100 0x2000000 0x42080000 0x42080100 0x80100 0x42000000 0x42080100 0x2080000 0 0x40080000 0x42000000 0x80100 0x2000100 0x40000100 0x80000 0 0x40080000 0x2080100 0x40000100]
variable spfunction6 [list 0x20000010 0x20400000 0x4000 0x20404010 0x20400000 0x10 0x20404010 0x400000 0x20004000 0x404010 0x400000 0x20000010 0x400010 0x20004000 0x20000000 0x4010 0 0x400010 0x20004010 0x4000 0x404000 0x20004010 0x10 0x20400010 0x20400010 0 0x404010 0x20404000 0x4010 0x404000 0x20404000 0x20000000 0x20004000 0x10 0x20400010 0x404000 0x20404010 0x400000 0x4010 0x20000010 0x400000 0x20004000 0x20000000 0x4010 0x20000010 0x20404010 0x404000 0x20400000 0x404010 0x20404000 0 0x20400010 0x10 0x4000 0x20400000 0x404010 0x4000 0x400010 0x20004010 0 0x20404000 0x20000000 0x400010 0x20004010]
variable spfunction7 [list 0x200000 0x4200002 0x4000802 0 0x800 0x4000802 0x200802 0x4200800 0x4200802 0x200000 0 0x4000002 0x2 0x4000000 0x4200002 0x802 0x4000800 0x200802 0x200002 0x4000800 0x4000002 0x4200000 0x4200800 0x200002 0x4200000 0x800 0x802 0x4200802 0x200800 0x2 0x4000000 0x200800 0x4000000 0x200800 0x200000 0x4000802 0x4000802 0x4200002 0x4200002 0x2 0x200002 0x4000000 0x4000800 0x200000 0x4200800 0x802 0x200802 0x4200800 0x802 0x4000002 0x4200802 0x4200000 0x200800 0 0x2 0x4200802 0 0x200802 0x4200000 0x800 0x4000002 0x4000800 0x800 0x200002]
variable spfunction8 [list 0x10001040 0x1000 0x40000 0x10041040 0x10000000 0x10001040 0x40 0x10000000 0x40040 0x10040000 0x10041040 0x41000 0x10041000 0x41040 0x1000 0x40 0x10040000 0x10000040 0x10001000 0x1040 0x41000 0x40040 0x10040040 0x10041000 0x1040 0 0 0x10040040 0x10000040 0x10001000 0x41040 0x40000 0x41040 0x40000 0x10041000 0x1000 0x40 0x10040040 0x1000 0x41040 0x10001000 0x40 0x10000040 0x10040000 0x10040040 0x10000000 0x40000 0x10001040 0 0x10041040 0x40040 0x10000040 0x10040000 0x10001000 0x10001040 0 0x10041040 0x41000 0x41000 0x1040 0x1040 0x40040 0x10000000 0x10041000]

Function/Subroutine Documentation

ret des::createKeys ( type  key,
optional  weak = 0 
)

Definition at line 923 of file tcldesjr.tcl.

References error(), and keys.

00923                                                   {
00924     variable pc2bytes0
00925     variable pc2bytes1
00926     variable pc2bytes2
00927     variable pc2bytes3
00928     variable pc2bytes4
00929     variable pc2bytes5
00930     variable pc2bytes6
00931     variable pc2bytes7
00932     variable pc2bytes8
00933     variable pc2bytes9
00934     variable pc2bytes10
00935     variable pc2bytes11
00936     variable pc2bytes12
00937     variable pc2bytes13
00938     variable shifts
00939 
00940     # Stores the return keys
00941     set keys {}
00942     # Other variables
00943     set lefttemp {}; set righttemp {}
00944     binary scan $key H8H8 lefttemp righttemp
00945     set left {}
00946     append left "0x" $lefttemp
00947     set right {}
00948     append right "0x" $righttemp
00949 
00950     #puts "Left key: $left"
00951     #puts "Right key: $right"
00952 
00953     # Test for weak keys
00954         if {! $weak} {
00955             set maskedLeft [expr {$left & 0xfefefefe}]
00956             set maskedRight [expr {$right & 0xfefefefe}]
00957             if {($maskedLeft == 0x00000000) \
00958                     && ($maskedRight == 0x00000000)} {
00959                 error "The key is weak!"
00960             } elseif {($maskedLeft == 0x1e1e1e1e) \
00961                           && ($maskedRight == 0x0e0e0e0e)} {
00962                 error "The key is weak!"
00963             } elseif {($maskedLeft == 0xe0e0e0e0) \
00964                           && ($maskedRight == 0xf0f0f0f0)} {
00965                 error "The key is weak!"
00966             } elseif {($maskedLeft == 0xfefefefe) \
00967                           && ($maskedRight == 0xfefefefe)} {
00968                 error "The key is weak!"
00969             }
00970         }
00971 
00972     set temp [expr {(($left >> 4) ^ $right) & 0x0f0f0f0f}]
00973     set right [expr {$right ^ $temp}]
00974     set left [expr {$left ^ ($temp << 4)}]
00975     set temp [expr {(($right >> 16) ^ $left) & 0x0000ffff}]
00976     set left [expr {$left ^ $temp}]
00977     set right [expr {$right ^ ($temp << 16)}]
00978     set temp [expr {(($left >> 2) ^ $right) & 0x33333333}]
00979     set right [expr {$right ^ $temp}]
00980     set left [expr {$left ^ ($temp << 2)}]
00981     set temp [expr {(($right >> 16) ^ $left) & 0x0000ffff}]
00982     set left [expr {$left ^ $temp}]
00983     set right [expr {$right ^ ($temp << 16)}]
00984     set temp [expr {(($left >> 1) ^ $right) & 0x55555555}]
00985     set right [expr {$right ^ $temp}]
00986     set left [expr {$left ^ ($temp << 1)}]
00987     set temp [expr {(($right >> 8) ^ $left) & 0x00ff00ff}]
00988     set left [expr {$left ^ $temp}]
00989     set right [expr {$right ^ ($temp << 8)}]
00990     set temp [expr {(($left >> 1) ^ $right) & 0x55555555}]
00991     set right [expr $right ^ $temp]
00992     set left [expr {$left ^ ($temp << 1)}]
00993         
00994     # puts "Left key PC1: [format %x $left]"
00995     # puts "Right key PC1: [format %x $right]"
00996 
00997     # The right side needs to be shifted and to get
00998     # the last four bits of the left side
00999     set temp [expr {($left << 8) | (($right >> 20) & 0x000000f0)}];
01000     # Left needs to be put upside down
01001     set left [expr {($right << 24) | (($right << 8) & 0x00ff0000) | \
01002                 (($right >> 8) & 0x0000ff00) \
01003                 | (($right >> 24) & 0x000000f0)}];
01004     set right $temp;
01005 
01006     #puts "Left key juggle: [format %x $left]"
01007     #puts "Right key juggle: [format %x $right]"
01008 
01009     # Now go through and perform these
01010     # shifts on the left and right keys.
01011     foreach i $shifts  {
01012         # Shift the keys either one or two bits to the left.
01013         if {$i} {
01014         set left [expr {($left << 2) \
01015                     | (($left >> 26) & 0x0000003f)}];
01016         set right [expr {($right << 2) \
01017                      | (($right >> 26) & 0x0000003f)}];
01018         } else {
01019         set left [expr {($left << 1) \
01020                     | (($left >> 27) & 0x0000001f)}];
01021         set right [expr {($right << 1) \
01022                      | (($right >> 27) & 0x0000001f)}];
01023         }
01024         set left [expr {$left & 0xfffffff0}];
01025         set right [expr {$right & 0xfffffff0}];
01026 
01027         # Now apply PC-2, in such a way that E is easier when encrypting or
01028         # decrypting this conversion will look like PC-2 except only the
01029         # last 6 bits of each byte are used rather than 48 consecutive bits
01030         # and the order of lines will be according to how the S selection
01031         # functions will be applied: S2, S4, S6, S8, S1, S3, S5, S7.
01032         set lefttemp [expr {[lindex $pc2bytes0 [expr {($left >> 28) & 0x0000000f}]] | \
01033                     [lindex $pc2bytes1 [expr {($left >> 24) & 0x0000000f}]] | \
01034                     [lindex $pc2bytes2 [expr {($left >> 20) & 0x0000000f}]] | \
01035                     [lindex $pc2bytes3 [expr {($left >> 16) & 0x0000000f}]] | \
01036                     [lindex $pc2bytes4 [expr {($left >> 12) & 0x0000000f}]] | \
01037                     [lindex $pc2bytes5 [expr {($left >> 8) & 0x0000000f}]] | \
01038                     [lindex $pc2bytes6 [expr {($left >> 4) & 0x0000000f}]]}];
01039         set righttemp [expr {[lindex $pc2bytes7 [expr {($right >> 28) & 0x0000000f}]] | \
01040                      [lindex $pc2bytes8 [expr {($right >> 24) & 0x0000000f}]] | \
01041                      [lindex $pc2bytes9 [expr {($right >> 20) & 0x0000000f}]] | \
01042                      [lindex $pc2bytes10 [expr {($right >> 16) & 0x0000000f}]] | \
01043                      [lindex $pc2bytes11 [expr {($right >> 12) & 0x0000000f}]] | \
01044                      [lindex $pc2bytes12 [expr {($right >> 8) & 0x0000000f}]] | \
01045                      [lindex $pc2bytes13 [expr {($right >> 4) & 0x0000000f}]]}];
01046         set temp [expr {(($righttemp >> 16) ^ $lefttemp) & 0x0000ffff}];
01047         lappend keys [expr {$lefttemp ^ $temp}];
01048         lappend keys [expr {$righttemp ^ ($temp << 16)}];
01049     }
01050     # Return the keys we've created.
01051     return $keys;
01052     }; /*  End of createKeys.*/

Here is the call graph for this function:

ret des::stream ( type  keyset,
type  message,
type  encrypt,
type  mode,
type  iv,
optional  kbits = 64 
)

Definition at line 481 of file tcldesjr.tcl.

References error(), keys, spfunction2, spfunction3, spfunction4, spfunction5, spfunction6, spfunction7, and spfunction8.

00481                                                                                                        {
00482     variable spfunction1
00483     variable spfunction2
00484     variable spfunction3
00485     variable spfunction4
00486     variable spfunction5
00487     variable spfunction6
00488     variable spfunction7
00489     variable spfunction8
00490     variable desEncrypt
00491     variable keysets
00492 
00493     # Determine if the keyset handle is valid.
00494     if {[array names keysets $keyset] != {}} {
00495         # Acquire the 16 subkeys we will need.
00496         set keys $keysets($keyset)
00497     } else {
00498         error "The keyset handle \"$keyset\" is invalid!"
00499     }
00500 
00501     # Is the initialization/feedback vector variable is valid?
00502     if {[string length $iv] < 1} {
00503         error "An initialization variable must be specified."
00504     } else {
00505         upvar $iv ivec
00506         if {![info exists ivec]} {
00507         error "The variable $iv does not exist."
00508         }
00509     }
00510 
00511         # Determine if message length (in bits)
00512     # is not an integral number of kbits.
00513     set len [string length $message];
00514         #puts "len: $len, kbits: $kbits"
00515     if {($kbits < 1) || ($kbits > 64)} {
00516         error "The valid values of kbits are 1 through 64."
00517         } elseif {($kbits % 8) != 0} {
00518         set blockSize [expr {$kbits + (8 - ($kbits % 8))}]
00519         set fail [expr {(($len * 8) / $blockSize) % $kbits}]
00520     } else {
00521         set blockSize [expr {$kbits / 8}]
00522         set fail [expr {$len % $blockSize}]
00523     }
00524         if {$fail} {
00525         error "Data length (in bits) is not an integral number of kbits."
00526     }
00527 
00528     set m 0
00529     set n 0
00530     set chunk 0;
00531     # Set up the loops for des
00532     set looping $desEncrypt
00533 
00534         # Set up shifting values.  Used for both CFB and OFB modes.
00535         if {$kbits < 32} {
00536         # Only some bits from left output are needed.
00537         set kOutShift [expr {32 - $kbits}]
00538         set kOutMask [expr {0x7fffffff >> (31 - $kbits)}]
00539         # Determine number of message bytes needed per iteration.
00540         set msgBytes [expr {int(ceil(double($kbits) / 8.0))}]
00541         # Determine number of message bits needed per iteration.
00542         set msgBits [expr {$msgBytes * 8}]
00543         set msgBitsSub1 [expr {$msgBits - 1}]
00544         # Define bit caches.
00545         set bitCacheIn {}
00546         set bitCacheOut {}
00547         # Variable used to remove bits 0 through
00548         # kbits-1 in the input bit cache.
00549         set kbitsSub1 [expr {$kbits - 1}]
00550         # Variable used to remove leading dummy binary bits.
00551         set xbits [expr {32 - $kbits}]
00552     } elseif {$kbits == 32} {
00553         # Only bits of left output are used.
00554         # Four messages bytes are needed per iteration.
00555         set msgBytes 4
00556         set xbits 32
00557     } elseif {$kbits < 64} {
00558         # All bits from left output are needed.
00559         set kOutShiftLeft [expr {$kbits - 32}]
00560         # Some bits from right output are needed.
00561         set kOutShiftRight [expr {64 - $kbits}]
00562         set kOutMaskRight [expr {0x7fffffff >> (63 - $kbits)}]
00563         # Determine number of message bytes needed per iteration.
00564         set msgBytes [expr {int(ceil(double($kbits) / 8.0))}]
00565         # Determine number of message bits needed per iteration.
00566         set msgBits [expr {$msgBytes * 8}]
00567         set msgBitsSub1 [expr {$msgBits - 1}]
00568         # Define bit caches.
00569         set bitCacheIn {}
00570         set bitCacheOut {}
00571         # Variable used to remove bits 0 through
00572         # kbits-1 in the input bit cache.
00573         set kbitsSub1 [expr {$kbits - 1}]
00574         # Variable used to remove leading dummy binary bits.
00575         set xbits [expr {64 - $kbits}]
00576     } else {
00577         # All 64 bits of output are used.
00578         # Eight messages bytes are needed per iteration.
00579         set msgBytes 8
00580         set xbits 0
00581     }
00582 
00583     # Store the result here
00584     set result {}
00585     set tempresult {}
00586 
00587     # Set up the initialization vector bitstream
00588     binary scan $ivec H8H8 leftTemp rightTemp
00589     set left "0x$leftTemp"
00590     set right "0x$rightTemp"
00591         #puts "Retrieved Feedback vector: $fbvec"
00592         #puts "Start: |$left| |$right|"
00593     
00594     # Loop through each 64 bit chunk of the message
00595     while {$m < $len} {
00596         # puts "Left start: $left";
00597         # puts "Right start: $right";
00598 
00599         # First each 64 but chunk of the
00600         # message must be permuted according to IP.
00601         set temp [expr {(($left >> 4) ^ $right) & 0x0f0f0f0f}];
00602         set right [expr {$right ^ $temp}];
00603         set left [expr {$left ^ ($temp << 4)}];
00604         set temp [expr {(($left >> 16) ^ $right) & 0x0000ffff}];
00605         set right [expr {$right ^ $temp}];
00606         set left [expr {$left ^ ($temp << 16)}];
00607         set temp [expr {(($right >> 2) ^ $left) & 0x33333333}];
00608         set left [expr {$left ^ $temp}];
00609         set right [expr {$right ^ ($temp << 2)}];
00610 
00611         set temp [expr {(($right >> 8) ^ $left) & 0x00ff00ff}];
00612         set left [expr {$left ^ $temp}];
00613         set right [expr {$right ^ ($temp << 8)}];
00614         set temp [expr {(($left >> 1) ^ $right) & 0x55555555}];
00615         set right [expr {$right ^ $temp}];
00616         set left [expr {$left ^ ($temp << 1)}];
00617 
00618         set left [expr {((($left << 1) & 0xffffffff) | \
00619                  (($left >> 31) & 0x00000001))}]; 
00620         set right [expr {((($right << 1) & 0xffffffff) | \
00621                   (($right >> 31) & 0x00000001))}]; 
00622 
00623         #puts "Left IP: [format %x $left]";
00624         #puts "Right IP: [format %x $right]";
00625 
00626         # Do this 1 time for each chunk of the message
00627         set endloop [lindex $looping 1];
00628         set loopinc [lindex $looping 2];
00629 
00630         # puts "endloop: $endloop";
00631         # puts "loopinc: $loopinc";
00632 
00633         # Now go through and perform the encryption or decryption  
00634         for {set i [lindex $looping 0]} \
00635         {$i != $endloop} {incr i $loopinc} {
00636         # For efficiency
00637         set right1 [expr {$right ^ [lindex $keys $i]}]; 
00638         set right2 [expr {((($right >> 4) & 0x0fffffff) | \
00639                        (($right << 28) & 0xffffffff)) ^ \
00640                       [lindex $keys [expr {$i + 1}]]}];
00641  
00642         # puts "right1: [format %x $right1]";
00643         # puts "right2: [format %x $right2]";
00644 
00645         # The result is attained by passing these
00646         # bytes through the S selection functions.
00647         set temp $left;
00648         set left $right;
00649         set right [expr {$temp ^ ([lindex $spfunction2 [expr {($right1 >> 24) & 0x3f}]] | \
00650                           [lindex $spfunction4 [expr {($right1 >> 16) & 0x3f}]] | \
00651                           [lindex $spfunction6 [expr {($right1 >>  8) & 0x3f}]] | \
00652                           [lindex $spfunction8 [expr {$right1 & 0x3f}]] | \
00653                           [lindex $spfunction1 [expr {($right2 >> 24) & 0x3f}]] | \
00654                           [lindex $spfunction3 [expr {($right2 >> 16) & 0x3f}]] | \
00655                           [lindex $spfunction5 [expr {($right2 >>  8) & 0x3f}]] | \
00656                           [lindex $spfunction7 [expr {$right2 & 0x3f}]])}];
00657  
00658         # puts "Left iter: [format %x $left]";
00659         # puts "Right iter: [format %x $right]";
00660         }
00661         set temp $left;
00662         set left $right;
00663         set right $temp; # Unreverse left and right
00664 
00665         #puts "Left Iterated: [format %x $left]";
00666         #puts "Right Iterated: [format %x $right]";
00667 
00668         # Move then each one bit to the right
00669         set left [expr {((($left >> 1) & 0x7fffffff) | \
00670                  (($left << 31) & 0xffffffff))}]; 
00671         set right [expr {((($right >> 1) & 0x7fffffff) | \
00672                   (($right << 31) & 0xffffffff))}]; 
00673 
00674         #puts "Left shifted: [format %x $left]";
00675         #puts "Right shifted: [format %x $right]";
00676 
00677         # Now perform IP-1, which is IP in the opposite direction
00678         set temp [expr {((($left >> 1) & 0x7fffffff) ^ $right) & 0x55555555}];
00679         set right [expr {$right ^ $temp}];
00680         set left [expr {$left ^ ($temp << 1)}];
00681         set temp [expr {((($right >> 8) & 0x00ffffff) ^ $left) & 0x00ff00ff}];
00682         set left [expr {$left ^ $temp}];
00683         set right [expr {$right ^ ($temp << 8)}];
00684         set temp [expr {((($right >> 2) & 0x3fffffff) ^ $left) & 0x33333333}]; 
00685         set left [expr {$left ^ $temp}];
00686         set right [expr {$right ^ ($temp << 2)}];
00687         set temp [expr {((($left >> 16) & 0x0000ffff) ^ $right) & 0x0000ffff}];
00688         set right [expr {$right ^ $temp}];
00689         set left [expr {$left ^ ($temp << 16)}];
00690         set temp [expr {((($left >> 4) & 0x0fffffff) ^ $right) & 0x0f0f0f0f}];
00691         set right [expr {$right ^ $temp}];
00692         set left [expr {$left ^ ($temp << 4)}];
00693 
00694         #puts "Left IP-1: [format %x $left]";
00695         #puts "Right IP-1: [format %x $right]";
00696 
00697         # Extract the "kbits" most significant bits from the output block.
00698         if {$kbits < 32} {
00699         # Only some bits from left output are needed.
00700         set kData [expr {($left >> $kOutShift) & $kOutMask}]
00701         set newBits {}
00702         # If necessary, copy message bytes into input bit cache.
00703         if {([string length $bitCacheIn] < $kbits) && ($n < $len)} {
00704             if {$len - $n < $msgBytes} {
00705             set lastBits [expr {($len - $n) * 8}]
00706             ###puts -nonewline [binary scan $message x${n}B$lastBits newBits]
00707             binary scan $message x${n}B$lastBits newBits
00708             } else {
00709             # Extract "msgBytes" whole bytes as bits
00710             ###puts -nonewline [binary scan $message x${n}B$msgBits newBits]
00711             binary scan $message x${n}B$msgBits newBits
00712             }
00713             incr n $msgBytes
00714             #puts " $newBits  $n [expr {$len - $n}]"
00715             # Add the bits to the input bit cache.
00716             append bitCacheIn $newBits
00717         }
00718         #puts -nonewline "In bit cache: $bitCacheIn"
00719         # Set up message data from input bit cache.
00720         binary scan [binary format B32 [format %032s [string range $bitCacheIn 0 $kbitsSub1]]] H8 temp
00721         set msgData "0x$temp"
00722         # Mix message bits with crypto bits.
00723         set mixData [expr {$msgData ^ $kData}]
00724         # Discard collected bits from the input bit cache.
00725         set bitCacheIn [string range $bitCacheIn $kbits end]
00726         #puts "  After: $bitCacheIn"
00727         # Convert back to a bit stream and append to the output bit cache.
00728         # Only the lower kbits are wanted.
00729         binary scan [binary format H8 [format %08x $mixData]] B32 msgOut
00730         append bitCacheOut [string range $msgOut $xbits end]
00731         #puts -nonewline "Out bit cache: $bitCacheOut"
00732         # If there are sufficient bits, move bytes to the temporary holding string.
00733         if {[string length $bitCacheOut] >= $msgBits} {
00734             append tempresult [binary format B$msgBits [string range $bitCacheOut 0 $msgBitsSub1]]
00735             set bitCacheOut [string range $bitCacheOut $msgBits end]
00736                     #puts -nonewline "  After: $bitCacheOut"
00737             incr m $msgBytes
00738             ###puts "$m bytes output"
00739             incr chunk $msgBytes
00740         }
00741         #puts ""
00742         # For CFB mode
00743         if {$mode == 1} {
00744             if {$encrypt} {
00745             set temp [expr {($right << $kbits) & 0xffffffff}]
00746             set left [expr {(($left << $kbits) & 0xffffffff) | (($right >> $kOutShift) & $kOutMask)}]
00747             set right [expr {$temp | $mixData}]
00748             } else {
00749             set temp [expr {($right << $kbits) & 0xffffffff}]
00750             set left [expr {(($left << $kbits) & 0xffffffff) | (($right >> $kOutShift) & $kOutMask)}]
00751             set right [expr {$temp | $msgData}]
00752             }
00753         }
00754         } elseif {$kbits == 32} {
00755         # Only bits of left output are used.
00756         set kData $left
00757         # Four messages bytes are needed per iteration.
00758         binary scan $message x${m}H8 temp
00759         incr m 4
00760         incr chunk 4
00761         set msgData "0x$temp"
00762         # Mix message bits with crypto bits.
00763         set mixData [expr {$msgData ^ $kData}]
00764         # Move bytes to the temporary holding string.
00765         append tempresult [binary format H8 [format %08x $mixData]]
00766         # For CFB mode
00767         if {$mode == 1} {
00768             set left $right
00769             if {$encrypt} {
00770             set right $mixData
00771             } else {
00772             set right $msgData
00773             }
00774         }
00775         } elseif {$kbits < 64} {
00776         set kDataLeft [expr {($left >> $kOutShiftRight) & $kOutMaskRight}]
00777         set temp [expr {($left << $kOutShiftLeft) & 0xffffffff}]
00778         set kDataRight [expr {(($right >> $kOutShiftRight) & $kOutMaskRight) | $temp}]
00779         # If necessary, copy message bytes into input bit cache.
00780         if {([string length $bitCacheIn] < $kbits)  && ($n < $len)} {
00781             if {$len - $n < $msgBytes} {
00782             set lastBits [expr {($len - $n) * 8}]
00783             ###puts -nonewline [binary scan $message x${n}B$lastBits newBits]
00784             binary scan $message x${n}B$lastBits newBits
00785             } else {
00786             # Extract "msgBytes" whole bytes as bits
00787             ###puts -nonewline [binary scan $message x${n}B$msgBits newBits]
00788             binary scan $message x${n}B$msgBits newBits
00789             }
00790             incr n $msgBytes
00791             # Add the bits to the input bit cache.
00792             append bitCacheIn $newBits
00793         }
00794         # Set up message data from input bit cache.
00795         # puts "Bits from cache: [set temp [string range $bitCacheIn 0 $kbitsSub1]]"
00796         # puts "Length of bit string: [string length $temp]"
00797         binary scan [binary format B64 [format %064s [string range $bitCacheIn 0 $kbitsSub1]]] H8H8 leftTemp rightTemp
00798         set msgDataLeft "0x$leftTemp"
00799         set msgDataRight "0x$rightTemp"
00800         # puts "msgDataLeft: $msgDataLeft"
00801         # puts "msgDataRight: $msgDataRight"
00802         # puts "kDataLeft: [format 0x%08x $kDataLeft]"
00803         # puts "kDataRight: [format 0x%08x $kDataRight]"
00804         # Mix message bits with crypto bits.
00805         set mixDataLeft [expr {$msgDataLeft ^ $kDataLeft}]
00806         set mixDataRight [expr {$msgDataRight ^ $kDataRight}]
00807         # puts "mixDataLeft: $mixDataLeft"
00808         # puts "mixDataRight: $mixDataRight"
00809         # puts "mixDataLeft: [format 0x%08x $mixDataLeft]"
00810         # puts "mixDataRight: [format 0x%08x $mixDataRight]"
00811         # Discard collected bits from the input bit cache.
00812         set bitCacheIn [string range $bitCacheIn $kbits end]
00813         # Convert back to a bit stream and
00814         # append to the output bit cache.
00815         # Only the lower kbits are wanted.
00816         binary scan \
00817             [binary format H8H8 \
00818              [format %08x $mixDataLeft] \
00819              [format %08x $mixDataRight]] B64 msgOut
00820         append bitCacheOut [string range $msgOut $xbits end]
00821         # If there are sufficient bits, move
00822         # bytes to the temporary holding string.
00823         if {[string length $bitCacheOut] >= $msgBits} {
00824             append tempresult \
00825             [binary format B$msgBits \
00826                  [string range $bitCacheOut 0 $msgBitsSub1]]
00827             set bitCacheOut [string range $bitCacheOut $msgBits end]
00828             incr m $msgBytes
00829             incr chunk $msgBytes
00830         }
00831         # For CFB mode
00832         if {$mode == 1} {
00833             if {$encrypt} {
00834             set temp \
00835                 [expr {($right << $kOutShiftRight) & 0xffffffff}]
00836             set left [expr {$temp | $mixDataLeft}]
00837             set right $mixDataRight
00838             } else {
00839             set temp \
00840                 [expr {($right << $kOutShiftRight) & 0xffffffff}]
00841             set left [expr {$temp | $msgDataLeft}]
00842             set right $msgDataRight
00843             }
00844         }
00845         } else {
00846         # All 64 bits of output are used.
00847         set kDataLeft $left
00848         set kDataRight $right
00849         # Eight messages bytes are needed per iteration.
00850         binary scan $message x${m}H8H8 leftTemp rightTemp
00851         incr m 8
00852         incr chunk 8
00853         set msgDataLeft "0x$leftTemp"
00854         set msgDataRight "0x$rightTemp"
00855         # Mix message bits with crypto bits.
00856         set mixDataLeft [expr {$msgDataLeft ^ $kDataLeft}]
00857         set mixDataRight [expr {$msgDataRight ^ $kDataRight}]
00858         # Move bytes to the temporary holding string.
00859         append tempresult \
00860             [binary format H16 \
00861              [format %08x%08x $mixDataLeft $mixDataRight]]
00862         # For CFB mode
00863         if {$mode == 1} {
00864             if {$encrypt} {
00865             set left $mixDataLeft
00866             set right $mixDataRight
00867             } else {
00868             set left $msgDataLeft
00869             set right $msgDataRight
00870             }
00871         }
00872         }
00873 
00874         #puts "Left final: [format %08x $left]";
00875         #puts "Right final: [format %08x $right]"
00876 
00877         if {$chunk >= 512} {
00878         append result $tempresult
00879         set tempresult {};
00880         set chunk 0;
00881         }
00882     }; # For every 8 characters, or 64 bits in the message
00883         #puts "End: |[format 0x%08x $left]| |[format 0x%08x $right]|"
00884     # Save the left and right registers to the feedback vector.
00885     set ivec [binary format H* [format %08x $left][format %08x $right]]
00886     #puts "Saved Feedback vector: $fbvectors($fbvector)"
00887 
00888         append result $tempresult
00889     if {[string length $result] > $len} {
00890         set result [string replace $result $len end]
00891     }
00892     # Return the result as an array
00893     return $result
00894     }; /*  End of stream*/

Here is the call graph for this function:


Variable Documentation

variable des::keys

Definition at line 68 of file tcldes.tcl.

Referenced by createKeys(), and stream().

variable des::spfunction2

Definition at line 212 of file tcldes.tcl.

Referenced by stream().

variable des::spfunction3

Definition at line 213 of file tcldes.tcl.

Referenced by stream().

variable des::spfunction4

Definition at line 214 of file tcldes.tcl.

Referenced by stream().

variable des::spfunction5

Definition at line 215 of file tcldes.tcl.

Referenced by stream().

variable des::spfunction6

Definition at line 216 of file tcldes.tcl.

Referenced by stream().

variable des::spfunction7

Definition at line 217 of file tcldes.tcl.

Referenced by stream().

variable des::spfunction8

Definition at line 218 of file tcldes.tcl.

Referenced by stream().


Generated on 21 Sep 2010 for Gui by  doxygen 1.6.1