Cerfacs Entrez dans le monde de la haute performance...

Le Cerfacs en bref

Centre de recherche fondamentale et appliquée spécialisé dans la modélisation et la simulation numériques, également centre de formation avancée, le Cerfacs, par ses moyens et son savoir-faire en calcul haute performance, traite des grands problèmes scientifiques et techniques de recherche publique et industrielle sur les secteurs suivants: AERONAUTIQUE&AUTOMOBILEESPACEENERGIEENVIRONNEMENT&CLIMAT
Ses effectifs sont de l'ordre de 100-150 chercheurs, ingénieurs et administratifs.

En savoir plus

LES ACTUALITÉS

Comment les codes du Cerfacs aident à concevoir les chambres de combustion des hélicoptères du futur

6 décembre 2016

Cette video montre comment SAFRAN HELICOPTER ENGINES utilise les codes de type Large Eddy Simulations développés par le CERFACS en liaison avec le CORIA et EM2C pour la conception des chambres de combustion des hélicoptères.Lire la suite


Bienvenue aux nouveaux Doctorants, Post-Doctorants et Ingénieurs du Cerfacs

2 décembre 2016

Bienvenue aux nouveaux ingénieurs, doctorants et post-doctorants intégrant le Cerfacs en ce dernier trimestre 2016

  • Philippe Leleux - Ingénieur d'études dans l'équipe Algorithmique Parallèle
  • Paul Mycek : Post Doctorant dans l'équipe Algo
  • François Moussu -...
Lire la suite

Toute l'actualité

L'AGENDA

Aucun événement n'a été trouvé

Consulter l'agenda

NOS PUBLICATIONS

Bidadi, S., Perez-Arroyo, C., Puigt, G. and Boussuge, J. -F. (2016) A high-order adaptive finite volume methodology for shock- turbulence interaction, Journal of Computational Physics

@ARTICLE{AR-CFD-16-141, author = {Bidadi, S. and Perez-Arroyo, C. and Puigt, G. and Boussuge, J.-F. }, title = {A high-order adaptive finite volume methodology for shock- turbulence interaction}, year = {2016}, journal = {Journal of Computational Physics}, abstract = {In the current study, a computationally efficient fully finite volume methodology for aeroacoustics of high-speed turbulent flows is proposed. The formulation consists of two main components: (1) the finite volume extension of a sixth-order finite difference compact scheme in conjunction with an eighth-order compact filter to remove grid-to-grid oscillations in smooth regions, and (2) a new adaptive nonlinear filtering technique to capture sharp discontinuities in the flow. The sensors of Bogey and Ducros are employed to control the dissipation of the nonlinear filter. Within the shock/dissipation region, the second-order minmod and fifth-order Monotonicity Preserving Approach (MPA) reconstruction algorithms are used to provide the required dissipation. For the minmod case, it is demonstrated that turbulent eddies passing through the shock zone are exposed to excess dissipation when the number of points per wavelength of the oncoming perturbation is approximately four times the size of the dissipation zone width. In order to mitigate the excess dissipation of the minmod filter, an alternate technique of controlling the velocity jump instead of the numerical viscosity of the nonlinear filter is suggested. The dispersion and dissipative properties of the methodology are analysed by employing the approximate dispersion relation (ADR). Then the dispersion-dissipation condition of Hu et al. is used to optimize the spectral behavior of the nonlinear filter. The new methodology together with the two versions of the minmod filter and the MPA filter are examined for several benchmark problems. The results for the modified-minmod and MPA filters show good agreement with the reference solutions. Moreover, the extra CPU cost due to the shock filtering technique is limited, and is shown to be lower than the ones estimated in previous studies. }, keywords = {elsA, Finite volume, Shock-capturing, Shock filter, Spatial filter, Compact scheme, Shock sensor, Computational aeroacoustics}}

Urbano, A., Douasbin, Q., Selle, L., Staffelbach, G., Cuenot, B., Schmitt, T., Ducruix, S. and Candel, S. (2016) Study of flame response from the Large-Eddy Simulation of a 42-injector rocket engine, Proceedings of the Combustion Institute, 36, doi:10.1016/j.proci.2016.06.042

[doi]

@ARTICLE{AR-CFD-16-192, author = {Urbano, A. and Douasbin, Q. and Selle, L. and Staffelbach, G. and Cuenot, B. and Schmitt, T. and Ducruix, S. and Candel, S. }, title = {Study of flame response from the Large-Eddy Simulation of a 42-injector rocket engine}, year = {2016}, volume = {36}, doi = {10.1016/j.proci.2016.06.042}, journal = {Proceedings of the Combustion Institute}}

Felden, A., Riber, E. and Cuenot, B. (2016) Effect of the chemistry description on LES of a realistic swirled non-premixed combustor, Proceedings of the Combustion Institute, 36

@ARTICLE{AR-CFD-16-170, author = {Felden, A. and Riber, E. and Cuenot, B. }, title = {Effect of the chemistry description on LES of a realistic swirled non-premixed combustor}, year = {2016}, volume = {36}, journal = {Proceedings of the Combustion Institute}}

Poinsot, T. (2016) Prediction and control of combustion instabilities in real engines, Proceedings of the Combustion Institute, 36, doi:10.1016/j.proci.2016.05.007

[doi]

@ARTICLE{AR-CFD-16-198, author = {Poinsot, T. }, title = {Prediction and control of combustion instabilities in real engines}, year = {2016}, volume = {36}, doi = {10.1016/j.proci.2016.05.007}, journal = {Proceedings of the Combustion Institute}, abstract = {This paper presents recent progress in the field of thermoacoustic combustion instabilities in propulsion engines such as rockets or gas turbines. Combustion instabilities have been studied for more than a century in simple laminar configurations as well as in laboratory-scale turbulent flames. These instabilities are also encountered in real engines but new mechanisms appear in these systems because of obvious differences with academic burners: larger Reynolds numbers, higher pressures and power densities, multiple inlet systems, complex fuels. Other differences are more subtle: real engines often feature specific unstable modes such as azimuthal instabilities in gas turbines or transverse modes in rocket chambers. Hydrodynamic instability modes can also differ as well as the combustion regimes, which can require very different simulation models. The integration of chambers in real engines implies that compressor and turbine impedances control instabilities directly so that the determination of the impedances of turbomachinery elements becomes a key issue. Gathering experimental data on combustion instabilities is difficult in real engines and large Eddy simulation (LES) has become a major tool in this field. Recent examples, however, show that LES is not sufficient and that theory, even in these complex systems, plays a major role to understand both experimental and LES results and to identify mitigation techniques.}}

Jaravel, T., Riber, E., Cuenot, B. and Bulat, G. (2016) Large Eddy Simulation of a model gas turbine burner using reduced chemistry with accurate pollutant prediction, Proceedings of the Combustion Institute, 36

@ARTICLE{AR-CFD-16-171, author = {Jaravel, T. and Riber, E. and Cuenot, B. and Bulat, G. }, title = {Large Eddy Simulation of a model gas turbine burner using reduced chemistry with accurate pollutant prediction}, year = {2016}, volume = {36}, journal = {Proceedings of the Combustion Institute}}

Toutes les publications

LE CERFACS RECRUTE

THESE CIFRE AVEC SNECMA: Simulation numerique des instabilites thermo-acoustiques des turbines à gaz

 

Required Education / Niveau requis Master ou école d'ingenieur From / Date de début 2016 Duration / Durée 3 ans Context / Contexte Le...Lire plus


Ingénieur de recherche – Modélisation et assimilation de données d’altimétriques en hydraulique fluviale

 

Le Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS) s'intéresse à la modélisation du climat et de ses...Lire plus

Toutes les offres