Cerfacs Entrez dans le monde de la haute performance...

Le Cerfacs en bref

Centre de recherche fondamentale et appliquée spécialisé dans la modélisation et la simulation numériques, également centre de formation avancée, le Cerfacs, par ses moyens et son savoir-faire en calcul haute performance, traite des grands problèmes scientifiques et techniques de recherche publique et industrielle sur les secteurs suivants: AERONAUTIQUE&AUTOMOBILEESPACEENERGIEENVIRONNEMENT&CLIMAT
Ses effectifs sont de l'ordre de 100-150 chercheurs, ingénieurs et administratifs.

En savoir plus

LES ACTUALITÉS

Colloque Sparse Days 2018 au Cerfacs, Toulouse

12 juin 2018

La réunion annuelle des Sparse Days se tiendra au CERFACS à Toulouse les  27 au 28 Septembre 2018 au Cerfacs, Toulouse, France. L’inscription aux Sparse Days est gratuite, mais nous demandons aux personnes intéressées de s’inscrire le plus tôt possible, bien que la date limite...Lire la suite


Un nouveau calculateur mis en production au Cerfacs

16 mai 2018

Début mai 2018 le Cerfacs a ouvert en production son nouveau calculateur Kraken. Fourni par la société Lenovo celui-ci développe une performance crête de 315 Tflop/s. Ce nouveau calculateur comprend 4 284 coeurs répartis dans 119 noeuds de calcul disposant chacun de 2 processeurs...Lire la suite

Toute l'actualité

L'AGENDA

Aucun événement n'a été trouvé

Consulter l'agenda

NOS PUBLICATIONS

Dounia, O., Vermorel, O. and Poinsot, T. (2018) Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles, Combustion and Flame, 193, pp. 313-326, doi:10.1016/j.combustflame.2018.03.033

[pdf] [doi]

@ARTICLE{AR-CFD-18-75, author = {Dounia, O. and Vermorel, O. and Poinsot, T. }, title = {Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles}, year = {2018}, volume = {193}, pages = {313-326}, doi = {10.1016/j.combustflame.2018.03.033}, journal = {Combustion and Flame}, abstract = {The capacity of sodium bicarbonate (NaHCO3)s powder to chemically reduce flame speeds and mitigate the effects of accidental explosions is well established. The inhibition of premixed hydrocarbon/air flames by monodispersed (NaHCO3)s solid particles is investigated, here, using theory and numerical simulations. First, an analytical solution for the temperature history of a solid (NaHCO3)s particle crossing a flame shows that the size of the largest (NaHCO3)s particle which can decompose inside the flame front, and act on chemical reactions efficiently, strongly depends on the flame speed. For various fuels and a wide range of equivalence ratios, particles with a strong potential for flame inhibition are identified: hence a criterion, on the maximum particle size, for efficient inhibition is proposed. Thereafter, a one-dimensional methane/air flame traveling in a premixed gas loaded with sodium bicarbonate is simulated using a chemical mechanism based on GRI-Mech, extended to include inhibition chemistry and reduced to 20 species with a DRGEP method. Inhibitor particle size and mass loading are varied to study the flame response to inhibition by (NaHCO3)s powders. Finally, two-dimensional simulations of a planar flame traveling in a flow with a non-uniform inhibitor mass loading distribution are analyzed. In the case of strong particle stratication, an acceleration of the flame is observed, instead of a mitigation. This fundamental mechanism may limit the actual potential of inhibition powders in real configurations.}, keywords = {DT, detonation, flame acceleration}, pdf = {https://cerfacs.fr/wp-content/uploads/2018/06/CFD_DOUNIA_COMBandFJUIN2018.pdf}}

Lehner, F., Deser, C., Simpson, I. R. and Terray, L. (2018) Attributing the U.S. Southwest's Recent Shift Into Drier Conditions, Geophysical Research Letters, 45 (12), pp. 6251-6261, doi:10.1029/2018GL078312

[pdf] [Supplementary Material] [doi]

@ARTICLE{AR-CMGC-18-88, author = {Lehner, F. and Deser, C. and Simpson, I.R. and Terray, L. }, title = {Attributing the U.S. Southwest's Recent Shift Into Drier Conditions}, year = {2018}, number = {12}, volume = {45}, pages = {6251-6261}, doi = {10.1029/2018GL078312}, journal = {Geophysical Research Letters}, pdf = {https://cerfacs.fr/wp-content/uploads/2018/07/GLOBC-Article-terray-Attributing-the-U.S.-Southwests-Recent-Shift-Into-Drier-Conditions-2018.pdf}, supplementaryMaterial = {https://cerfacs.fr/wp-content/uploads/2018/07/ARTICLE-GLOBC-TERRAY-JUILLET-SI.pdf}}

Barthélémy, S., Ricci, S., Morel, T., Goutal, N., Le Pape, E. and Zaoui, F. (2018) On operational flood forecasting system involving 1D/2D coupled hydraulic model and data assimilation, Journal of Hydrology, 562, pp. 623-634, doi:10.1016/j.jhydrol.2018.05.007

[pdf] [doi]

@ARTICLE{AR-CMGC-18-69, author = {Barthélémy, S. and Ricci, S. and Morel, T. and Goutal, N. and Le Pape, E. and Zaoui, F. }, title = {On operational flood forecasting system involving 1D/2D coupled hydraulic model and data assimilation}, year = {2018}, volume = {562}, pages = {623-634}, doi = {10.1016/j.jhydrol.2018.05.007}, journal = {Journal of Hydrology}, pdf = {https://cerfacs.fr/wp-content/uploads/2018/06/GLOBC-Article-Barthelemy_CouplageAdour_JoH_2018.pdf}}

Bushuk, M., Msadek, R., Winton, M., Vecchi, G., Yang, X., Rosati, A. and Gudgel, R. (2018) Regional Arctic sea-ice prediction : Potential versus operational seasonal forecast skill, Climate Dynamics, pp. 1-23, doi:10.1007/s00382-018-4288-y

[pdf] [doi]

@ARTICLE{AR-CMGC-18-76, author = {Bushuk, M. and Msadek, R. and Winton, M. and Vecchi, G. and Yang, X. and Rosati, A. and Gudgel, R. }, title = {Regional Arctic sea-ice prediction : Potential versus operational seasonal forecast skill}, year = {2018}, pages = {1-23}, doi = {10.1007/s00382-018-4288-y}, journal = {Climate Dynamics}, pdf = {https://cerfacs.fr/wp-content/uploads/2018/06/GLOBC-Article-Buskuk_ClimDyn_-JUIN2018.pdf}}

Odier, N., Balarac, G. and Corre, C. (2018) Numerical analysis of the flapping mechanism for a two-phase coaxial jet, International Journal of Multiphase Flow, 106 (september), pp. 164–178, doi:10.1016/j.ijmultiphaseflow.2018.05.028

[url] [doi]

@ARTICLE{AR-CFD-18-81, author = {Odier, N. and Balarac, G. and Corre, C }, title = {Numerical analysis of the flapping mechanism for a two-phase coaxial jet}, year = {2018}, number = {september}, volume = {106}, pages = {164–178}, doi = {10.1016/j.ijmultiphaseflow.2018.05.028}, journal = {International Journal of Multiphase Flow}, abstract = {A numerical study of a coaxial liquid jet sheared by an annular high-speed stream is performed at moderate density and velocity ratio between phases. The destabilization mechanism of the jet is studied : due to the shear induced by the high-speed stream, annular interfacial waves are generated near the jet injection, which subsequently connect and yield a sinuous organization for the whole jet, leading to a global flapping phenomenon. The influence of the high-speed stream boundary layer thickness on this flapping is investigated, as well as the influence of the velocity and the momentum flux ratio between phases. It appears that it is not sufficient to consider only the momentum flux ratio between phases to characterize the flapping dynamics or the steps of the atomization process. On the other hand, the Reynolds and Weber numbers based on the high-speed stream properties display a strong influence on these phenomena.}, keywords = {Coaxial jet; Two-phase flow; Flapping dynamics; Parametric study}, url = {https://www.journals.elsevier.com/international-journal-of-multiphase-flow}}

Toutes les publications