Cerfacs Entrez dans le monde de la haute performance...

Le Cerfacs en bref

Centre de recherche fondamentale et appliquée spécialisé dans la modélisation et la simulation numériques, également centre de formation avancée, le Cerfacs, par ses moyens et son savoir-faire en calcul haute performance, traite des grands problèmes scientifiques et techniques de recherche publique et industrielle sur les secteurs suivants: AERONAUTIQUE&AUTOMOBILEESPACEENERGIEENVIRONNEMENT&CLIMAT
Ses effectifs sont de l'ordre de 100-150 chercheurs, ingénieurs et administratifs.

En savoir plus

LES ACTUALITÉS

Une médaille de bronze pour le Cerfacs pour “Allons-Y À Vélo” !

26 juillet 2021

Une médaille de bronze pour le Cerfacs pour "Allons-Y À Vélo" ! Le Cerfacs s'est hissé sur le podium de la catégorie 100-500 employés dans le cadre de la campagne Allons-Y À Vélo qui s'est déroulée du 25 mai au 25 juin derniers. Durant cette période, 37% des employés du Cerfacs  sont venus à vélo au boulot pendant au moins 4 jours consécutifs. Allons-Y À Vélo est une campagne de promotion du vélo comme moyen de déplacement quotidien organisée par l'association "2 Pieds 2 Roues" and "La Maison du Vélo de Toulouse"; tous les détails sont disponibles sur allonsyavelo.le-pic.org  Le Cerfacs encourage ses employés à venir à vélo au travail, en les faisant bénéficier en particulier du Forfait de Mobilité Durable d'un maximum de 500 Euros par année.Lire la suite


Le projet H2OPE remporte le prix Joseph Fourier 2021

26 juillet 2021

Le projet H2OPE remporte le prix Joseph Fourier 2021 Le prix, lancé par Atos et GENCI, vise à récompenser le travail des chercheurs, universitaires et industriels dans deux domaines stratégiques: L’Advanced Computing (HPC, Quantum, Edge) et l’Intelligence Artificielle, et, dans l'edition 2021, attache une importance toute particulière à la Décarbonation. Le 1er Prix a été attribué au projet H2OPE ou « H2OPErabilité pour des moteurs turbine à gaz sûrs et propres », du CERFACS à Toulouse. Ce projet vise, via le code LES AVBP, à modéliser à haute résolution un processus de combustion mixte associant des carburants classiques à de l’hydrogène (bi-fuels) comme l'une des solutions techniques les plus prometteuses pour atteindre « zéro émissions nettes » de CO2 dans le domaine industriel. Il a été présenté par Walter Agostinelli, Davide Laera, Laurent Gicquel, et Thierry Poinsot.   Communiqué de presse :Lire la suite

Toute l'actualité

L'AGENDA

Aucun événement n'a été trouvé

Consulter l'agenda

NOS PUBLICATIONS

Lamidel, D., Daviller, G., Roger, M. and Posson, H. (2021) Numerical Prediction of the Aerodynamics and Acoustics of aTip Leakage Flow Using Large-Eddy Simulation, International Journal of Turbomachinery, Propulsion and Power, 6 (3), pp. article number 27, doi:10.3390/ijtpp6030027

[pdf] [doi]

@ARTICLE{AR-CFD-21-82, author = {Lamidel, D. and Daviller, G. and Roger, M. and Posson, H. }, title = {Numerical Prediction of the Aerodynamics and Acoustics of aTip Leakage Flow Using Large-Eddy Simulation}, year = {2021}, number = {3}, volume = {6}, pages = {article number 27}, doi = {10.3390/ijtpp6030027}, journal = {International Journal of Turbomachinery, Propulsion and Power}, abstract = {A Large-Eddy Simulation of the tip leakage flow of a single airfoil is carried out. Theconfiguration consists of a non-rotating, isolated airfoil between two horizontal plates with a gap of10 mm between the tip of the airfoil and the lower plate. The Mach number of the incoming flow is0.2, and the Reynolds number based on the chord is 9.3×105. The objective of the present studyis to investigate the best way to compute both the aerodynamics and acoustics of the tip leakageflow. In particular, the importance of the inflow conditions on the prediction of the tip leakage vortexand the airfoil loading is underlined. On the other hand, the complex structure of the tip leakagevortex and its convection along the airfoil was recovered due to the use of a mesh adaptation basedon the dissipation of the kinetic energy. Finally, the ability of the wall law to model the flow in the tipleakage flow region was proven in terms of wall pressure fluctuations and acoustics in the far-field.}, keywords = {Large-eddy simulation, fan noise, tip leakage flow, tip clearance noise}, pdf = {https://cerfacs.fr/wp-content/uploads/2021/07/Lamidel_AR-CFD-21-82.pdf}}

Carmona, J., Odier, N., Desjardins, O., Cuenot, B., Misdariis, A. and Cayre, A. (2021) A Comparative Study of Direct Numerical Simulation and Experimental Results on a Prefilming Airblast Atomization Configuration, Atomization and Sprays, 31 (8), pp. 9-32, doi:10.1615/AtomizSpr.2021037399

[url] [doi]

@ARTICLE{AR-CFD-21-83, author = {Carmona, J. and Odier, N. and Desjardins, O. and Cuenot, B. and Misdariis, A. and Cayre, A. }, title = {A Comparative Study of Direct Numerical Simulation and Experimental Results on a Prefilming Airblast Atomization Configuration}, year = {2021}, number = {8}, volume = {31}, pages = {9-32}, doi = {10.1615/AtomizSpr.2021037399}, journal = {Atomization and Sprays}, abstract = {Liquid injection systems play a key role in the control of flame stability and reduction of pollutant emissions in aircraft engines. However, the disintegration process of the liquid fuel is not completely understood. In that context, direct numerical simulations can be helpful but tend to be very costly. Indeed, they require high spatial resolution to accurately capture complex phenomena such as liquid-gas interface instabilities and primary atomization process with liquid bags, ligaments, and droplets formation. This paper presents a computational study of a prefilming atomizer where relevant di-mensionless parameters are chosen to reproduce realistic conditions while limiting CPU cost. The experiment under study is an academic configuration from KIT-ITS in which a liquid film is injected along a prefilmer plate surrounded by high-speed air flow. The simulation has been performed with the incompressible solver NGA using a volume of fluid method coupled with a piecewise linear interface calculation technique for interface reconstruction. Qualitative and quantitative analyses are carried out and show very good agreement between simulation and experiment. The main physical phenomena such as film instabilities, liquid accumulation process at the prefilmer edge, and primary breakup mechanisms are well recovered by the simulation and in agreement with the experiment. A consistent method to compare both the experiment and the numerical simulation based on frame analysis is developed to extract the droplet diameter distribution. The resulting size distribution evaluated from simulation is shown to be in good agreement with experimental data validating our proposed methodology to reduce computational cost. }, keywords = {Atomization, prefilming airblast, liquid film, ligament-breakup, bag-breakup, droplet size distribution, direct numerical simulation, volume of fluid}, url = {https://www.dl.begellhouse.com/pt/journals/6a7c7e10642258cc,665548b84602ecc4,5d21940029f6ebd3.html#}}

Cazères, Q., Pepiot, P., Riber, E. and Cuenot, B. (2021) A fully automatic procedure for the analytical reduction of chemical kinetics mechanisms for Computational Fluid Dynamics applications, Fuel, 303, pp. 121247, doi:10.1016/j.fuel.2021.121247

[doi]

@ARTICLE{AR-CFD-21-74, author = {Cazères, Q. and Pepiot, P. and Riber, E. and Cuenot, B. }, title = {A fully automatic procedure for the analytical reduction of chemical kinetics mechanisms for Computational Fluid Dynamics applications}, year = {2021}, volume = {303}, pages = {121247}, doi = {10.1016/j.fuel.2021.121247}, journal = {Fuel}, abstract = {A new software called ARCANE has been developed to address the broad need for compact, computationally efficient chemical models for reactive flow simulations. Based on a new, fully automatic and optimised multi-step reduction methodology, ARCANE's purpose is to provide a convenient and more accessible framework for the analysis and reduction of chemical kinetic mechanisms in the general context of combustion chemistry. The capabilities and performance of the methodology are demonstrated through 3 case studies. First, a classical methane/air system with and without nitrogen/oxygen chemistry is studied as a benchmark. The framework is then applied to a kerosene/air mechanism with a multi-component fuel formulation, showing the ability of the fully automatic method to handle complex chemistry. Finally, the generality of the approach is confirmed by developing reduced chemical models for a hydrocarbon steam cracking process.}, keywords = {Chemical kinetics reduction, ARCANE, Analytically reduced chemistry}}

Chripko, S., Msadek, R., Sanchez-Gomez, E., Terray, L., Bessières, L. and Moine, M. -P. (2021) Impact of Reduced Arctic Sea Ice on Northern Hemisphere Climate and Weather in Autumn and Winter, Journal of Climate, 34 (14), pp. 5847-5867, doi:10.1175/JCLI-D-20-0515.1

[pdf] [doi]

@ARTICLE{AR-CMGC-21-77, author = {Chripko, S. and Msadek, R. and Sanchez-Gomez, E. and Terray, L. and Bessières, L. and Moine, M.-P. }, title = {Impact of Reduced Arctic Sea Ice on Northern Hemisphere Climate and Weather in Autumn and Winter}, year = {2021}, number = {14}, volume = {34}, pages = {5847-5867}, doi = {10.1175/JCLI-D-20-0515.1}, journal = {Journal of Climate}, pdf = {https://cerfacs.fr/wp-content/uploads/2021/07/Globc-AR-Chripko-JClim-21-77.pdf}}

Degrigny, J., Cai, S-G., Boussuge, J. -F. and Sagaut, P. (2021) Improved wall model treatment for aerodynamic flows in LBM, Computers and Fluids, 227, pp. 105041, doi:10.1016/j.compfluid.2021.105041

[url] [doi]

@ARTICLE{AR-CFD-21-79, author = {Degrigny, J. and Cai, S-G. and Boussuge, J.-F. and Sagaut, P. }, title = {Improved wall model treatment for aerodynamic flows in LBM}, year = {2021}, volume = {227}, pages = {105041}, doi = {10.1016/j.compfluid.2021.105041}, journal = {Computers and Fluids}, abstract = {The article deals with an improved treatment of wall models for the simulation of turbulent flows in the framework of Immersed Wall Boundaries on Cartesian grids. The emphasis is put on the implementation in a Lattice-Boltzmann Method solver without loss of generality, since the proposed approach can be used in Navier–Stokes-based solvers in a straightforward way. The proposed improved wall model implementation relies on the combination of several key elements, namely i) the removal of grid points too close to the solid surface and ii) an original computation of wall normal velocity gradient and iii) the interpolation scheme. The new method is successfully assessed considering URANS simulations focusing on steady solutions of the Zero Pressure Gradient turbulent flat plate boundary layer and the turbulent flow around a NACA0012 airfoil at several angles of attack.}, keywords = {Lattice Boltzmann method, Immersed boundaries, Wall model, Wall function, High Reynolds number, Reynolds-Averaged Navier-Stokes}, url = {https://www.sciencedirect.com/science/article/abs/pii/S004579302100205X?via%3Dihub}}

Toutes les publications

LE CERFACS RECRUTE

Projet TILDA – Adaptation hp de la méthode des différences spectrales et application à l'aéroacoustique

 

Contexte : L'équipe AAM du CERFACS travaille au développement et au déploiement des codes de mécaniques...Lire plus


Ingénieur ou post doc dans le domaine du couplage de codes sur machines HPC

 

Ce poste est à pourvoir dès que possible. Contexte Le Centre Européen de Recherche et de...Lire plus

Toutes les offres