Cerfacs Entrez dans le monde de la haute performance...

🎓 Soutenance de Thèse : Nicola DETOMASO

  Mardi 18 juin 2024 à 14h00

  Thèses Cerfacs       Cerfacs, Toulouse, France    

Simulation aux grandes échelles de la combustion à volume constant : modélisation numérique des flammes turbulentes propagatives dans des mélanges non homogènes

Le cycle thermodynamique classique des turbines à gaz n’a subi aucune modification majeure au cours des dernières décennies, et les améliorations d’efficacité les plus importantes ont été obtenues en réduisant les pertes thermiques, en augmentant le rapport de pression global et la température maximale. Malgré les efforts visant à améliorer les performances des chambres de combustion, les technologies actuelles pourraient ne pas être à la hauteur des contraintes environnementales de plus en plus strictes. Par conséquent, une percée technologique est essentielle pour façonner l’avenir des moteurs thermiques. La combustion à gain de pression (PGC) émerge comme l’une des solutions les plus prometteuses, introduisant de nouveaux cycles thermodynamiques où, contrairement au cycle Brayton, la pression augmente tout au long du processus de combustion. Cela peut conduire à une augmentation d’entropie plus faible, bénéficiant à l’efficacité globale du cycle.
Plusieurs concepts de PGC sont actuellement étudiés par la communauté scientifique, allant de la déflagration, telle que la combustion à volume constant (CVC), à la détonation, notamment la combustion à détonation rotative (RDC) et le moteur à détonation pulsée (PDE). La simulation aux grandes échelles (LES) a un rôle de plus en plus important dans ce domaine grâce à sa capacité à capturer les écoulements réactifs. Cependant, avec la complexité croissante des systèmes de combustion, des modèles physiques avancés sont cruciaux pour assurer des simulations prédictives.
Dans ce travail, la combustion à volume constant est évaluée et les principaux défis numériques posés par ces systèmes de combustion sont examinés. L’allumage, la combustion à haute pression, la dilution, l’interaction flamme-turbulence, les effets d’étirement, les flux de chaleur font partie intégrante de la physique que les systèmes CVC englobent, et leur interaction conduit à des phénomènes physiques complexes qui doivent être modélisés. Les modèles numériques développés dans ce travail sont principalement examinés dans des cas test, puis appliqués dans le calcul de la chambre à volume constant CV2, exploitée au laboratoire Pprime (Poitiers, France).
D’abord, des nouvelles conditions limites, basées sur le formalisme NSCBC, sont dérivées de la théorie des nozzles pour mimer les effets des soupapes d’admission et d’échappement. Les propriétés d’écoulement sont imposées dynamiquement à la fois à l’entrée et à la sortie de ces systèmes contrôlés par des vannes.
Une chimie globale pour les mélanges propane/air est dérivée pour différentes pressions, températures et compositions de gaz frais. La cinétique chimique est optimisée pour différentes concentrations de diluants, composés des gaz brûlés tels que le dioxyde de carbone et la vapeur d’eau. Comme les moteurs à piston, les chambres à volume constant fonctionnent cycliquement, et chaque événement de combustion est influencé par les gaz résiduels provenant des cycles précédents. Pour cette raison, un modèle numérique détaillant la composition locale des mélanges inflammables dilués est proposé pour fournir toutes les informations sur les gaz frais nécessaires à la cinétique et au modèle de combustion. Basé sur une généralisation du Thickened Flame (TF), un nouveau modèle de combustion, le Stretched-Thickened Flame (STF) model, est développé pour surmonter les limitations du modèle TF dans la prédiction des effets d’étirement sur la vitesse de combustion des flammes laminaire. Cela est crucial pour capturer efficacement les événements transitoires des flammes propagative, fondamentaux dans les chambres CVC. Enfin, dans le cadre de la modélisation de l’allumage, le modèle de dépôt d’énergie est couplé avec le modèle S-TF en suivant la taille du noyau au cours du temps.
Les modèles développés dans cette thèse sont ensuite appliqués à la chambre CV2, mettant en évidence leur impact positif dans la prédiction de la physique transitoire impliquée dans ces systèmes.

Jury

Dr. Denis Veynante            CNRS-CentraleSupelec            Rapporteur

Prof. Marc Bellenoue         CNRS-ENSMA                          Rapporteur

Prof. Antonio Andreini       UNIFI                                        Examinateur

Dr. Karine Truffin               IFPEN                                       Examinatrice

Dr. Florent Duchaine         CERFACS                                Directeur de Thèse

Dr. Thierry Poinsot            CERFACS                                Co-directeur de Thèse

Dr. Davide Laera                POLIBA                                   Invité

Dr. Omar Dounia               CERFACS                                Invité

No content defined in the sidebar.