Cerfacs Entrez dans le monde de la haute performance...

Soutenance d’ Habilitation à Diriger des Recherches (HDR): Florent DUCHAINE – High Performance Code Coupling for Multiphysics and Multicomponent Simulations in Fluid Dynamics

  Lundi 27 novembre 2017 à 14h00

  HDR Cerfacs       CERFACS - SALLE DE CONFERENCE JEAN-CLAUDE ANDRE |    

Abstract

The research activities exposed in this Habilitation à Diriger des Recherches are the results of collaborations either with Cerfacs researchers (permanents, post-docs, PhD and trainees) or people from other laboratories. The main drivers of the activities are the needs for research in the aeronautical and spatial propulsion fields with strong interactions with industries of the sector.

The common points of interest between all the presented research activities are the analysis, understanding and predictions of turbulent flows with heat transfer in propulsion devices. My PhD topic (defended) in 2007 was the integration of a RANS (Reynolds Averaged Navier-Stokes) combustion solver in an optimization loop to provide a knowledge-based design system for engineers. Later, my research interests have focused on the use of Large Eddy Simulation (LES) to solve turbulent flow fields in complex geometries. The interaction with optimization science and RANS simulations was limited to specific actions and comparisons with LES.

Today, my activities are mainly oriented toward the study of turbulent reacting flows and their interaction with solid parts. Multiphysics and multi-components analysis emanating from these topics are done thanks to High Performance Computing (HPC). Indeed, addressing turbulent reactive flow phenomenon in complex geometries is CPU intensive requiring HPC systems to reduce restitution times. The principal investigations concern:

·        turbulent flow fields analyses and wall heat flux predictions with Large Eddy Simulation,

·       conjugate heat transfer methodologies with unsteady flow solvers involving convection, conduction and radiation,

·       coupling methodologies between unsteady flow solvers for multi-components simulations, mainly combustion chamber / turbine interactions,

·       code coupling on massively parallel architectures.

After my PhD, I have conducted my research activities with PhD and post-doctoral students. Their contribution was an essential part of my work. I have now co-directed 11 PhD students, 10 master trainees and 5 post-doctorates. All these studies have led to 36 accepted peer review journal papers (H factor from Web Of Science: 8). This strong interaction with students is a key aspect in my research motivation and the reason why I present an Habilitation à Diriger des Recherches. Based on my background constructed along my career as a researcher, my research perspectives are built on the continuity of present studies, the extension to new fields and opening to new topics mainly centered around LES of turbulent flows in a coupled context.

Jury

Eric LAMBALLAIS Institut Pprime Rapporteur
Denis VEYNANTE Laboratoire EM2C Rapporteur
Isabelle TREBINJAC Ecole Centrale de Lyon Rapporteur
Marc ERRERA ONERA Examinateur
Marc JACOB ISAE Examinateur
Thierry POINSOT IMFT Correspondant

L'AGENDA

Mardi

21

Janvier

2025

🎓Soutenance de thèse Thomas LESAFFRE

Mardi 21 janvier 2025 à 9h30

  Thèses Cerfacs       JCA room, CERFACS, Toulouse    

Mercredi

29

Janvier

2025

🎓HDR Omar DOUNIA

Mercredi 29 janvier 2025 à 9h30

  HDR Cerfacs       JCA room, Cerfacs, Toulouse    

Mercredi

29

Janvier

2025

🎓Soutenance de thèse Victor COULON

Mercredi 29 janvier 2025 à 14h00

  Thèses Cerfacs       Salle JCA, CERFACS, Toulouse    

CONSULTER L'AGENDA