Cerfacs Entrez dans le monde de la haute performance...

Soutenance de Thèse (CNRM/CERFACS) : AURÉLIEN COSTES :  » Couplage bidirectionnel feu-atmosphère pour la propagation des incendies de forêt : modélisation, incertitudes et sensibilités »

  Mardi 11 mai 2021 à 14h30

  Thèses Cerfacs       En visioconférence sur youtube : https://youtu.be/tTiWqk1Vdxk    

Résumé :

Un incendie de forêt est le résultat d'interactions multi-échelle entre la végétation, la topographie du terrain et les conditions météorologiques, qui peuvent être exacerbées sous l'effet du changement climatique. Comprendre les processus qui pilotent son comportement à l'échelle d'un évènement est donc un enjeu majeur pour l'écologie et la sécurité civile.

Dans ces travaux de thèse, le modèle de feu Blaze a été développé et intégré au modèle atmosphérique de méso-échelle Méso-NH afin de reconstruire la chronologie détaillée d’un incendie et de fournir ainsi un cadre d’étude des interactions entre un incendie et la micro- météorologie. La réponse du modèle couplé Méso-NH/Blaze à différents choix de modélisation et différents scénarios atmosphériques a été étudiée pour quantifier les incertitudes associées aux quantités d’intérêt (la position du front de feu et les flux de chaleur latents et sensibles le long du front de feu par exemple) et identifier les paramètres les plus influents parmi ceux intervenant dans les paramétrisations de la vitesse de propagation et des flux de chaleur. Les résultats ont montré une influence significative de la turbulence atmosphérique sur la vitesse de propagation et le vent induit par le feu.

Dans sa version standard, le modèle atmosphérique Méso-NH repose sur l’hypothèse anélastique. La validité de cette hypothèse est discutable au voisinage des zones de flammes sujettes à d’importants dégagements de chaleur. La version compressible de Méso-NH, développée précédemment pour l’atmosphère sèche, a été étendue à l’atmosphère humide. Une comparaison entre les systèmes anélastique et compressible a été réalisée, à l’aide du modèle couplé Méso-NH/Blaze, sur l'expérience de brûlage dirigé FireFlux I. Les résultats ont montré que les effets compressibles deviennent importants à très haute résolution spatiale (10 m) et induisent des structures de très fine échelle comme des ondes de gravité dans la convection induite par le feu.

Jury :

François PIMONT – INRAE – Rapporteur

Albert SIMEONI – Worcester Polytechnic Institute University of Maryland – Rapporteur

Arnaud TROUVÉ – University of Maryland -Rapporteur

Jean-Baptiste FILIPPI – CNRS – Examinateur

Céline MARI – CNRS – Examinatrice

Christine LAC – Météo-France – Directrice

Mélanie ROCHOUX – CERFACS – Co-Directrice

Valéry MASSON – Météo-France – Co-Directeur (Invité)

 

 

L'AGENDA

Lundi

04

Décembre

2023

Intelligence Artificielle pour la simulation en physique

Du lundi 4 décembre 2023 au vendredi 8 décembre 2023

  Formation    

Lundi

11

Décembre

2023

Parallélisme multi-architecture avec la bibliothèque C++/Kokkos

Du lundi 11 décembre 2023 à 14h00 au mercredi 13 décembre 2023 à 17h00

  Formation    

Jeudi

21

Décembre

2023

Soutenance de thèse : Aurélien LINÉ : « Modulation du changement climatique européen à court terme par la variabilité interne multi-décennale « 

Jeudi 21 décembre 2023 à 15h00

  Thèses Cerfacs       Salle de conférences - CERFACS - Toulouse - France     Organisé par Nathalie Brouset    

CONSULTER L'AGENDA