Cerfacs Entrez dans le monde de la haute performance...

Soutenance de thèse d’ Adèle VEILLEUX :  » Extension de la méthode des Différences Spectrales aux cellules de type simplex et aux maillages hybrides »

  Mercredi 24 mars 2021 à 15h00

  Thèses Cerfacs       Cerfacs, Toulouse (France) - Salle de réunion Administration en visioconférence    

Webex link:
https://cerfacs.webex.com/cerfacs/j.phpMTID=md84fc463705118179ca351bdd80ee805

access code: 128 243 1066
password: rXN5DAMGj63

Résumé : 

Cette thèse analyse l’extension de la méthode des Différences Spectrales (SD) aux maillages hybrides non-structurés composés de cellules de type simplex (triangles, tétraèdres) et aux prismes. La méthode SD fait partie des méthodes numériques spectrales discontinues d’ordre élevé. Ces méthodes s’appuient sur une approximation polynomiale continue par morceaux pour obtenir une précision d’ordre élevé tout en maintenant une bonne efficacité en parallèle. Le schéma des Différences Spectrales standard est d’abord présenté dans le cas à une dimension puis pour les éléments de type produit tensoriel (quadrilatères et hexaèdres). Le traitement des cellules de type simplex, basé sur les éléments de Raviart-Thomas, est détaillé pour les triangles (2D) et les tétraèdres (3D), suivi de l’implémentation de la méthode sur prismes. 

La stabilité linéaire de la méthode des Différences Spectrales basée sur les éléments de Raviart-Thomas (SDRT) est étudiée sur triangles et sur tétraèdres. La stabilité du schéma SDRT dépend en particulier de la position des points flux intérieurs. Dans le cas des triangles, l'implémentation SDRT basée sur les points flux intérieurs placés selon la quadrature de Williams-Shunn-Jameson est montrée comme étant stable jusqu’au quatrième ordre de précision, mais spatialement instable pour des ordres plus élevés. Néanmoins, il est montré que cette implémentation peut être stabilisée pour les schémas du cinquième et sixième ordre en utilisant un schéma d’intégration temporel adéquat. Cette solution étant soumise à des conditions contraignantes, une optimisation de la position des points flux intérieurs est conduite de façon à déterminer une formulation SDRT spatialement stable pour des ordres de précision supérieurs à quatre. Le processus d’optimisation permet d'obtenir des schémas spatialement stables jusqu'au sixième ordre de précision. Enfin, l’analyse de stabilité sur tétraèdres démontre que le schéma SDRT basé sur des points flux intérieurs placés selon la quadrature de Shunn-Ham est stable jusqu’au troisième ordre. 

La méthode numérique SD/SDRT est validée sur plusieurs cas académiques pour les Équations aux Dérivées Partielles d’ordre un (équation d’advection linéaire, équations d’Euler) et deux (équations de Navier-Stokes). Les deux implémentations SDRT proposées (basées sur les points de quadrature de Williams-Shunn-Jameson ou sur les points d’optimisation) sont utilisées. Les cas de validation numérique impliquent des maillages composés de triangles quadratiques, de tétraèdres linéaires ainsi que de maillages hybrides 2D.

Mots clés : Méthode discontinue d’ordre élevé, Différences Spectrales, Maillage hybride, Analyse de stabilité, Analyse spatio-temporelle

Chunlei LIANG Clarkson University, Postdam-New York, USA Rapporteur
Georg MAY Von Karman Institute, Sint-Genesius-Rode, Belgium Rapporteur
Hélène BARUCQ INRIA Toulouse, France Examinatrice
Eusebio VALERO Universidad Politécnica de Madrid, Spain Examinatrice
Hugues DENIAU ONERA Toulouse, France Membre invité
Jean-Luc ESTIVALEZES IMFT Toulouse, France Membre invité
Guillaume PUIGT ONERA Toulouse, France Directeur de thèse
Guillaume DAVILLER CERFACS Toulouse, France Co directeur de thèse

 

L'AGENDA

Lundi

25

Novembre

2024

Génération de maillages avec CENTAUR

Lundi 25 novembre 2024

  Formation    

Mardi

26

Novembre

2024

🎓Soutenance de thèse Rachid EL MONTASSIR

Mardi 26 novembre 2024

  Salle JCA, Cerfacs, Toulouse, France    

Mercredi

27

Novembre

2024

Modèles de programmation parallèle : MPI, OpenMP

Du mercredi 27 novembre 2024 au jeudi 28 novembre 2024

  Formation    

CONSULTER L'AGENDA