Soutenance de thèse d’ Adèle VEILLEUX : » Extension de la méthode des Différences Spectrales aux cellules de type simplex et aux maillages hybrides »
Mercredi 24 mars 2021 à 15h00
Thèses Cerfacs Cerfacs, Toulouse (France) - Salle de réunion Administration en visioconférence
Webex link:
https://cerfacs.webex.com/cerfacs/j.phpMTID=md84fc463705118179ca351bdd80ee805
access code: 128 243 1066
password: rXN5DAMGj63
Résumé :
Cette thèse analyse l’extension de la méthode des Différences Spectrales (SD) aux maillages hybrides non-structurés composés de cellules de type simplex (triangles, tétraèdres) et aux prismes. La méthode SD fait partie des méthodes numériques spectrales discontinues d’ordre élevé. Ces méthodes s’appuient sur une approximation polynomiale continue par morceaux pour obtenir une précision d’ordre élevé tout en maintenant une bonne efficacité en parallèle. Le schéma des Différences Spectrales standard est d’abord présenté dans le cas à une dimension puis pour les éléments de type produit tensoriel (quadrilatères et hexaèdres). Le traitement des cellules de type simplex, basé sur les éléments de Raviart-Thomas, est détaillé pour les triangles (2D) et les tétraèdres (3D), suivi de l’implémentation de la méthode sur prismes.
La stabilité linéaire de la méthode des Différences Spectrales basée sur les éléments de Raviart-Thomas (SDRT) est étudiée sur triangles et sur tétraèdres. La stabilité du schéma SDRT dépend en particulier de la position des points flux intérieurs. Dans le cas des triangles, l'implémentation SDRT basée sur les points flux intérieurs placés selon la quadrature de Williams-Shunn-Jameson est montrée comme étant stable jusqu’au quatrième ordre de précision, mais spatialement instable pour des ordres plus élevés. Néanmoins, il est montré que cette implémentation peut être stabilisée pour les schémas du cinquième et sixième ordre en utilisant un schéma d’intégration temporel adéquat. Cette solution étant soumise à des conditions contraignantes, une optimisation de la position des points flux intérieurs est conduite de façon à déterminer une formulation SDRT spatialement stable pour des ordres de précision supérieurs à quatre. Le processus d’optimisation permet d'obtenir des schémas spatialement stables jusqu'au sixième ordre de précision. Enfin, l’analyse de stabilité sur tétraèdres démontre que le schéma SDRT basé sur des points flux intérieurs placés selon la quadrature de Shunn-Ham est stable jusqu’au troisième ordre.
La méthode numérique SD/SDRT est validée sur plusieurs cas académiques pour les Équations aux Dérivées Partielles d’ordre un (équation d’advection linéaire, équations d’Euler) et deux (équations de Navier-Stokes). Les deux implémentations SDRT proposées (basées sur les points de quadrature de Williams-Shunn-Jameson ou sur les points d’optimisation) sont utilisées. Les cas de validation numérique impliquent des maillages composés de triangles quadratiques, de tétraèdres linéaires ainsi que de maillages hybrides 2D.
Mots clés : Méthode discontinue d’ordre élevé, Différences Spectrales, Maillage hybride, Analyse de stabilité, Analyse spatio-temporelle
Chunlei LIANG | Clarkson University, Postdam-New York, USA | Rapporteur |
Georg MAY | Von Karman Institute, Sint-Genesius-Rode, Belgium | Rapporteur |
Hélène BARUCQ | INRIA Toulouse, France | Examinatrice |
Eusebio VALERO | Universidad Politécnica de Madrid, Spain | Examinatrice |
Hugues DENIAU | ONERA Toulouse, France | Membre invité |
Jean-Luc ESTIVALEZES | IMFT Toulouse, France | Membre invité |
Guillaume PUIGT | ONERA Toulouse, France | Directeur de thèse |
Guillaume DAVILLER | CERFACS Toulouse, France | Co directeur de thèse |