Cerfacs Enter the world of high performance ...

PhD Defense: Gaelle MOURET – Adaptation of phase-lagged boundary conditions to large-eddy simulation in turbomachinery configuration

  Thursday 30 June 2016 at 14h00

  Phd Thesis       Salle de Séminaires    

Abstract :

The more and more restrictive standards in terms of fuel consumption and pollution for aircraft engines lead to a constant improvement of their design. Numerical simulations appear as an interesting tool for a better understanding and modeling of the turbulent phenomena which occur in turbomachinery. The large-eddy simulation (LES) of a turbomachinery stage at realistic conditions (Mach number, Reynolds number…) remains out of reach for industrial congurations. The phase-lagged method, widely used for unsteady Reynolds-averaged Navier–Stockes (URANS) calculations, is a good candidate to reduce the computational cost. However, it needs to store the signal at all the boundaries over a full passage of the opposite blade. A direct storage of the information being excluded given the size of the mesh grid and timesteps involved, the most used solution currently is to decompose the signal into Fourier series. This solution retains the fundamental frequency of the signal (the opposite blade passage frequency) and a limited number of harmonics. In the frame of a LES, as the spectra are broadband, it implies a loss of energy. Replacing the Fourier series decomposition by a proper orthogonal decomposition (POD) allows the storage of the signal at the interfaces without making any assumptions on the frequency content of the signal, and helps to reduce the loss of energy caused by the phase lagged method. The compression is done by removing the smallest singular values and the associated vectors. This new method is first validated on the URANS simulations of turbomachinery stages and compared with Fourier series-based conditions and references calculations with multiple blades per row. It is then applied to the large eddy simulation of the flow around a cylinder. The error caused by the phase-lagged assumption and compression are separated and it is showed that the use of the POD allows to halve the filtering of the velocity fluctuations with respect to the Fourier series, for a given compression rate. Finally, the large eddy simulation of a compressor stage with POD phase-lagged conditions is carried out to validate the method for realistic turbomachinery configurations.

Keywords:  turbomachinery, large-eddy simulation, phase-lagged

Jury:

Paul TUCKER University of Cambridge Referee

Li HE University of Oxford Referee

Isabelle TREBINJAC CETHIL Lyon Member

Eric LIPPINOIS SNECMA Member

Jean-François BOUSSUGE CERFACS Referee

Lionel CASTILLON ONERA co Advisor

Nicolas GOURDAIN ISAE Advisor

CALENDAR

Thursday

12

September

2024

🎓 Soutenance de Thèse : Susanne BAUR

Thursday 12 September 2024From 14h00 at 18h00

  Thèses Cerfacs       JCA room, Cerfacs, Toulouse, France    

Monday

07

October

2024

Machine learning for data science

From Monday 7 October 2024 to Thursday 10 October 2024

  Training    

Monday

14

October

2024

Fundamentals to understand and analyse high fidelity compressible Large Eddy Simulations

From Monday 14 October 2024 to Wednesday 16 October 2024

  Training       Cerfacs, Toulouse, France    

ALL EVENTS