Cerfacs Enter the world of high performance ...

DDM-Data Science and Artificial Intelligence

Artificial Intelligence at Cerfacs

“Artificial Intelligence” (AI) encompasses many transformative technologies that will affect most fields of information technology in the years to come. However, the precise role that it will play is still very much an open question, field by field. This is even more true in the domain of scientific computing, where decades of developments have yielded high-fidelity reliable techniques. AI as a challenger has a lot to prove, but instead of opposing AI to traditional resolution techniques, many opportunities seem to lie in the synergies that are yet to be proven viable between the two.

At Cerfacs, the HELIOS (High pErformance LearnIng for cOmputational phySics) workgroup concentrates our efforts related to AI in order to coordinate resources, tools and technological surveys. Helios focuses on investigating recent developments in the field of Machine Learning for their potential to revolutionize computational physics, as they have e.g. the field of image processing. Specifically, Deep Learning, with the training of Artificial Neural Networks, is a very promising technique which is actively investigated for several reasons: its capacity to systematically extract information from previously underexploited databases; its ability to integrate complex multiscale patterns in physical models, to a level of complexity never reached in traditional hand-designed approaches; and for compression, generation and parametrization issues regarding high-dimensional data.


Databases are freely available on CERFACS’s website. These datasets are meant to be of relevance for physical modeling purposes, but framed as a learning problem in order to apply machine learning techniques to them. They are usually linked to a publication, available on arXiv, and a repository of code to help explore it, on CERFACS’ Gitlab. Please feel free to explore these datasets, and any feedback is welcome.

Fields of focus

Our AI activities mainly focus on the relation between AI and CFD. There are many ways in which data-driven techniques can be hybridized with traditional CFD solvers, some of which are suggested in the following figure:

As the literature and community have not yet matured on this topic, CERFACS is intent on pursuing several of these options in parallel to build insights into the future of hybrid CFD techniques.

Data-driven subgrid-scale models

Several actions related to data-driven sub-grid scale techniques are investigated at CERFACS, notably:

  • turbulent combustion models, for which the 2019 Grand Challenge on the Jean-Zay supercomputer gave the opportunity to demonstrate the scaling up of the AVBP-DL methodology on several thousand processors and several hundred GPUs (see the report, p. 16-17). (1 PhD)
  • RANS turbulence models, as well as wall models for LES, within the HiFi-Turb project (1 Postdoc)

New resolution techniques for CFD

Actions regarding the future of hybrid CFD solvers including deep learning directly in the resolution loop are centered around:

  • using neural networks to find an initial guess for the Poisson equation, enabling very low numbers of iteration from classical iterative solvers. This guarantees both the accuracy of traditional iterative solvers and the speed offered by the good initial guess. (2 PhDs)
  • exploring new discretization techniques for numerical schemes based on local flow analysis and dynamic stencil adaptation. (1 PhD)

Generative networks as surrogates

Generative networks, notably GANs, have brought incredible advances to the field of image generation of high quality. Today, these generators are used to learn fast differentiable surrogates for the generation of plausible physical data, both in earth sciences and subsurface modeling. (1 PhD)

Generative techniques also yield fast solutions for surrogate models, enabling rapid exploration of design spaces in aeronautics. (1 PhD with Airbus)

Deep learning for physical time-series forecasting

Time series forecasting is an important result of many physical models, be it for civil security issues, or industrial exploitation forecasting. We focus on including physical constraints in data-driven forecasting (1 PhD with Total), as well as predicting cloud, rain, water flow and floods over time (1 PhD, 1 Postdoc).


The AVBP code from CERFACS at the heart of three PRACE projects from the 23rd call

CERFACS |  30 September 2021

Cerfacs is involved in three PRACE projects of the 23rd call for which hour allocation runs from 01/10/2021 to 30/09/2022. Researchers from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) and IMFT (UMR 5502) laboratories have earned projects entirely based on the use of the LES solver developed by Cerfacs AVBP and involve the support of experts from the CFD and COOP teams underling the importance and effectiveness of collaborations between French labs and Cerfacs. Alexis Giauque from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) has obtained not only one but two PRACE projects! The first project LESFAN (RA0101, 30 000 000 CPU hours on Irene/Rome TGCC) is based on the use of AVBP in the turbomachinery version to study the generation of noise by a fan of a real airplane engine. The second, PRACE-EDGES (RA0101, 40 000 000 CPU hours on Irene/Rome TGCC) focuses on LES modeling of dens gas in complex geometries. To do so, the LMFA Team has developed advanced thermodynamic closures in AVBP allowing the direct simulation of such flows. Laurent Selle from IMFT (UMR 5502) has received CPU hours for the GASTON project (RA0061, 30 000 000 CPU hours on Marenostrum BSC) which aims to study the structure of hydrogen flames in porous materials. For this, IMFT and Cerfacs will perform coupled simulations considering the reactive flow with AVBP as well as the conduction in the porous medium with AVTP which is known to play an central role in the flame stabilization process.Read more

watch the online contest ”my thesis in 180 sec” organized for Marie Curie actions

CERFACS |  24 September 2021

Next Thursday, Sept 30th the #FallingWallsLab #MSCA research presentation competition will take place, . This is a competition in which 15 researchers compete to deliver the best presentation of their research topic in the format "my thesis in 180 seconds" . Javier Crespo-Anadon, 3rd year PhD student in the CFD team is one of the 15 finalists and he will present this thesis topic: ignition in spinning combustion engines for a reduction in CO2 emissions! You can watch it online on the above website on Sept 30th at 3pm. I encourage you to go to the website and register!  You'll be able to listen to the other participants' pitches and vote for your favorite. Come and see for yourself what kind of research the EU funds!Read more