Cerfacs Enter the world of high performance ...

The 30 March 2020

High order discontinuous spectral methods for massively parallel LES

nasri |  

Announced
Deadline for registration: 15 days before the starting date of each training
Duration : 1 day (7 hours)

Pre-registration

Abstract

Large Eddy Simulation (LES) needs accurate schemes with enhanced spectral properties (low dissipation and low dispersion). Even if standard high order schemes (WENO, compact…) respect this need for structured grids, the situation is less clear for complex geometries, where unstructured grids are required.
The discontinuous spectral methods were introduced in order to circumvent the drawbacks of standard methods on unstructured grids. In this case, any conservative quantity is defined as a local polynomial in a control volume through its definition in several degrees of freedom per cell.
During this training, we will introduce these approaches defines as spectral discontinuous. After a bibliographic review, attention is paid on applications performed with the in-house solver JAGUAR developed at CERFACS and based on a discontinuous spectral formalism.

Objective of the training

To learn about spectral discontinuous approaches and to know how to realize LES computations with them.

Learning outcomes

The participants should be able to :

  • explain the differences between the different numerical schemes,
  • chose the good number of iterations in order to reach the convergence,
  • use the good sub-grid model,
  • chose the good size of unstructured grids,
  • being able to simulate academicals configurations.

Target participants

This training session is for students, engineers, physicists and computer scientists who wish to reinforce or extend their theoretical background to the precise use and analysis of CFD simulations.

Prerequisites

In order to follow this course, you need to:

  • Knowledge of Unix commands.
  • Knowledge of numerical flow simulations.

To verify that the prerequisites are satisfied, the following questionnaires must be completed. You need to get at least 75% of correct answers in order to be authorized to follow this training session. If you don’t succeed it, your subscription will not be validated. You only have two chances to complete them.

Questionnaire 1 : https://forms.gle/VxkqRFfoqJSuoTBQ7

Questionnaire 2 : https://forms.gle/DL6QXxRDRNqKA5V1A

Scientific contact : Jean-François Boussuge

Fee

  • Trainees/PhDs/PostDocs : 70 €
  • CERFACS shareholders/CNRS/INRIA : 200 €
  • Public : 400 €

Program

Day 1 morning:
Introduction and analysis of discontinuous spectral methods
– Discontinuous Galerkin
– Spectral Volume
– Spectral Difference
– Flux Reconstruction

Day 1 afternoon:

Effects of spectral discontinuous methods on a computational environment:
– High order mesh and curved elements,
– Splitting the mesh
– Post-treatment

Introduction to JAGUAR:
– Mesh and input file
– Boundary conditions
– Serial and parallel performance of JAGUAR

– Application of JAGUAR on several test cases. It is also possible to work on an attendee’s application.

Final examination

A final exam will be conducted during the training.

Pre-registration

NEWS

A researcher of CERFACS guest during the France Culture radio show « La méthode scientifique » this week

superadmin |  20 January 2020

Mélanie Rochoux,  a researcher at Cerfacs working on wildfire spread modeling at the interface between CFD simulations and data science, is invited to the France Culture radio show « La méthode scientifique » next Wednesday to talk about megafires. Who are they? How are they formed? What are their impacts? How science can provide insights? The radio show is on Wednesday, January 22nd at 4:00 pm on the France Culture's channel.Read more


Thierry Poinsot becomes member of the French Academy of Sciences

Jean-François BOUSSUGE |  14 January 2020

Thierry Poinsot was elected at the French Academy of Sciences in december 2019 with 17 other scientists. This is a great recognition for the work done in Toulouse at IMFT (CNRS) and CERFACS over the last thirty years in CFD and in combustion.    Read more

ALL NEWS