Cerfacs Enter the world of high performance ...

Numerical methods for Large Eddy Simulations

  From Monday 11 April 2022 to Friday 15 April 2022

  Training    

Announced
Deadline for registration: 15 days before the starting date of each training
Duration : 5 days (35 hours)

Before signing up, you may wish to report us any particular constraints (schedules, health, unavailability…)

at the following e-mail address : training@cerfacs.fr

Satisfaction index

 

In November 2021, 93,3 % of participants were satisfied or very satisfied

(results collected from 15 respondents out of 17 participants, a response rate of 88,24%)

Abstract

The AVBP code is a parallel code of fluid mechanics that solves compressible Navier-Stokes equations for laminar and turbulent reactive flows, in 2D and 3D, on unstructured and hybrid meshes, with third order Taylor Galerkin schemes. The resolution of these equations is based on the Large Eddy Simulation (or Large Eddy Simulation) approach. Reduced chemical kinetics according to the Arrhenius law coupled to the TFLES model for sub-grid flame-turbulence interactions make possible to treat combustion phenomena. AVBP can also calculate two-phase flows using a Lagrangian or Eulerian solver. AVBP applies to aeronautical combustion chambers, turbomachinery, industrial furnaces and safety issues, it allows for example to evaluate polluting emissions (CO, NOx and soot), to treat thermo-acoustic instabilities or detonation phenomena. AVBP is a world-famous code in the field of combustion, used by many laboratories (IMFT in Toulouse, EM2C in Centralesupelec, TU Munich, Von Karmann Institute, ETH Zurich, etc.) and in industry (SAFRAN AIRCRAFT ENGINES, SAFRAN HELICOPTER ENGINES, ARIANEGROUP, HERAKLES, TOTAL, etc.).

Objective of the training

The objective of the training is twofold: firstly, to understand the fundamental principles of Large-Scale Simulations for compressive reactive two-phase flows: numerical methods, boundary conditions, LES approach and closure models for LES, combustion as well as two-phase flows through theoretical courses; on the other hand, to learn how to use the AVBP code on the perimeter of two-phase reactive flows through tutorials supervised by experts of the code.

Learning outcomes

At the end of the training, participants will be able to:

• Describe the equations solved in AVBP for computing reactive turbulent two-phase flows.

• Specify the available models to deal with characteristics input and output boundary conditions, wall treatments, chemical kinetics, sub-grid interactions (turbulence and turbulence-flame), two-phase flows.

• Set up the computation of a reactive two-phase turbulent flow in a given geometry, from the generation of the initial solution of and the boundary conditions, through the parametrization of the computation in terms of numerical and physical models, to the launching of the computation on parallel computing machine, and until post-processing of the results.

Teaching methods

The training is an alternation of theoretical presentations and practical work. A multiple choice question allows the final evaluation. The training room is equipped with computers, the work can be done in sub-groups of two people.

Target participants

This course is intended for engineers, physicists, computer scientists and numerical analysts wishing to learn the LES reactive turbulent two-phase flows and how to use the AVBP code.

Prerequisites and registration

In order to follow this course, you need to:

  • Know Unix commands.
  • Know Basic knowledge of Fortran.
  • Know numerical flow simulations.
  • Have level B2 of CEFR (the training can take place in French of English depending on the audience).

To verify that the prerequisites are satisfied, the following questionnaires must be completed. You need to get at least 75% of correct answers in order to be authorized to follow this training session. If you don’t succeed it, your subscription will not be validated. You only have two chances to complete them.

Questionnaire 1 : https://forms.gle/VpxDVSGM1hgkf1XT7

Questionnaire 2 : https://forms.gle/SNzUrtReUPDBQsKz9

Questionnaire 3 : https://forms.gle/DW8Hm74wpiLjYtCk7

After completing the pre-requisite tests and obtaining at least 75% correct answers, you can register:

Pre-registration

Referent teacher: Eleonore Riber

Fee

  • Trainees/PhDs/PostDocs : 560 € excl. tax
  • CERFACS shareholders/CNRS/INRIA : 1400 € excl. tax
  • Public :2800 € excl. tax

Program

(Every day from 9h to 17h30)

Day 1

. 9h00: Welcome and coffee

· 9h30: Introduction

· 10:50: Break

· 11h00: Handson: Setting up a first case using AVBP: convection of a 2D vortex in a periodic domain

· 14h00: NSCBC formalism for compressible code & Boundary Conditions in AVBP

· 15h30: Break

· 15h45: Hands-on: Boundary conditions and acoustic waves

Day 2

9:00 : Handson: Convection of 2D vortex with inlet/outlet boundary conditions

10h45: Break

• 11h00: Handson: Sudden expansion

14:00: Thermochemistry and laminar combustion modeling

• 15h00: Handson: 1D flame with global chemistry

• 16h15: Break

• 16h30: Handson: 1D flame with ARC chemistry

Day 3

• 9:00: Turbulent combustion modeling.

• 9h45: Handson: DNS 2D of a Bunsen flame

• 11h00: Break

• 11h15: Handson: TFDNS 2D of a Bunsen flame

• 14h00: Spray flame modeling – Part1

• 15:00: Handson: A turbulent spray burner: the Cambridge burner

• 16:15: Break

• 16:30: Handson: droplet evaporation using a simplified model

Day 4
• 9h00: Spray flame modeling – Part2

• 9h45: Handson: droplet evaporation using a complex model

• 10h45: Break

• 11h00: Hands-on: 1D spray flame structure

• 14h00: Hands-on: Setting up a reacting case from scratch in a combustor

Day 5
• 9:00: Hands-on: Troubleshooting combustor runs

• 14h00: Other AVBP features and AVBP roadmap

• 15h00: Personal project-related questions

Evaluation of learning

A final exam will be conducted during the training.

CALENDAR

Monday

22

April

2024

Numerical methods for Large Eddy Simulation using AVBP

From Monday 22 April 2024 to Friday 26 April 2024

  Training    

Monday

29

April

2024

Code coupling using CWIPI

Monday 29 April 2024

  Training    

Monday

13

May

2024

Implementation and use of Lattice Boltzmann Method

Monday 13 May 2024

  Training    

ALL EVENTS