PhD defense: Fabien DUPUY – Reduced Order Models and Large Eddy Simulation for Combustion Instabilities in aeronautical Gas Turbines
Tuesday 30 June 2020 at 10h00
Phd Thesis Administration meeting room Cerfacs Toulouse (webex)
Abstract:
Increasingly stringent regulations as well as environmental concerns have lead gas turbine powered engine manufacturers to develop the current generation of combustors, which feature lower than ever fuel consumption and pollutant emissions. However, modern combustor designs have been shown to be prone to combustion instabilities, where the coupling between acoustics of the combustor and the flame results in large pressure oscillations and vibrations within the combustion chamber. These instabilities can cause structural damages to the engine or even lead to its destruction. At the same time, considerable developments have been achieved in the numerical simulation domain, and Computational Fluid Dynamics (CFD) has proven capable of capturing unsteady flame dynamics and combustion instabilities for aforementioned engines. Still, even with the current large and fast increasing computing capabilities, time remains the key constraint for these high fidelity yet computationally intensive calculations. Typically, covering the entire range of operating conditions for an industrial engine is still out of reach. In that respect, low order models exist and can be efficient at predicting the occurrence of combustion instabilities, provided an adequate modeling of the flame/acoustics interaction as appearing in the system is available. This essential piece of information is usually recast as the so-called Flame Transfer Function (FTF) relating heat release rate fluctuations to velocity fluctuations at a given point. One way to obtain this transfer function is to rely on analytical models, but few exist for turbulent swirling flames. Another way consists in performing costly experiments or numerical simulations, negating the requested fast prediction capabilities. This thesis therefore aims at providing fast, yet reliable methods to allow for low order combustion instabilities modeling. In that context, understanding the underlying mechanisms of swirling flame acoustic response is also targeted. To address this issue, a novel hybrid approach is first proposed based on a reduced set of high fidelity simulations that can be used to determine input parameters of an analytical model used to express the FTF of premixed swirling flames. The analytical model builds on previous works starting with a level-set description of the flame front dynamics while also accounting for the acoustic-vorticity conversion through a swirler. For such a model, validation is obtained using reacting stationary and pulsed numerical simulations of a laboratory scale premixed swirl stabilized flame. The model is also shown to be able to handle various perturbation amplitudes. At last, 3D high fidelity simulations of an industrial gas turbine powered by a swirled spray flame are performed to determine whether a combustion instability observed in experiments can be predicted using numerical analysis. To do so, a series of forced simulations is carried out in an effort to highlight the importance of the two-phase flow flame response evaluation. In that case, sensitivity to reference velocity perturbation probing positions as well as the amplitude and location of the acoustic perturbation source are investigated. The analytical FTF model derived in the context of a laboratory premixed swirled burner is furthermore gauged in this complex case. Results show that the unstable mode is predicted by the acoustic analysis, but that the flame model proposed needs further improvements to extend its applicability range and thus provide data relevant to actual aero-engines.
Keywords:
Combustion, instabilities, numerical simulation, acoustics, gas turbine
Jury:
Françoise BAILLOT | CORIA, Université de Rouen | Referee |
Sébastien DUCRUIX | EM2C, CentraleSupélec | Referee |
Eric SERRE | M2P2, Université Aix-Marseille | Member |
Thierry SCHULLER | Institut de Mécanique des Fluides de Toulouse | Member |
Franck NICOUD | IMAG, Université de Montpellier | Member |
Florent LACOMBE | Safran Aircraft Engines | Invited member |
Thierry POINSOT | Institut de Mécanique des Fluides de Toulouse | Advisor |