Cerfacs Enter the world of high performance ...



Numerical aerodynamics is a main topic for CERFACS. The CFD team develops numerical methods and tools that are used for academic cases but  more particularly in realistic aeronautical configuration : civil aviation, turbomachinery, helicopters or rockets.

This leads to simulate large computational domains and to use massive parallel computing platforms. Their efficient use is a fundamental CERFACS feature.

Research directions

The turbulence resolution is at the heart of our activity. For this, different approaches are used (RANS/URANS/LES/DNS) on multi-physics applications (aerocoustics, aerothermics or aeroelasticity). In addition to classic solvers and in order to prepare the next CFD solver generation, CERFACS invests on new approaches such as the very-high order methods or the Boltzmann method on lattices (LBM : Lattice Boltzmann Method).

This appears in the use of numerous solvers : elsA (http://elsa.onera.fr), AVBP, LaBS and Jaguar.

This diversity of approaches and solvers allows CERFACS to have an enlarged vision of the CFD world.


All the research activities are led in collaboration with numerous research centres (ONERA, Marseille University, Renault, Cenaero, IMFT, ECL, PPRIME, Sherbrooke University, DLR, von Karman Institute, Leceister University) as well as industrials ((Airbus, Airbus Hélicoptère, Airbus Defence and Space, Snecma, Turbomeca, SAFRAN Tech) through national or European programs.

Staying connected enables CERFACS to be at the forefront of what is being done in the numerical or aerodynamical simulation field.



NextSim General Assembly and TC meeting

CERFACS |  16 September 2021

The General Assembly and TC Meeting took place on 15-16 September 2021. CERFACS is involved in the NextSim project (). The primary objective is to increase the capabilities of Computational Fluid Dynamics tools on extreme-scale parallel computing platforms for aeronautical design. This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement N° 956104. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, France, Germany. This project has received funding from the Agence Nationale de la Recherche (ANR) under grant agreement N° ANR-20-EHPC-0002-02. For more information, please visit Read more

Sophie Valcke from Cerfacs co-authored a new book on atmosphere-ocean modelling

CERFACS |  18 August 2021

new book "Atmosphere-Ocean Modelling - Couling and Couplers” by Prof. Carlos R Mechoso, Prof. Soon-Il An and Dr Sophie Valcke has just been published by World Scientific. The present book fills a void in the current literature by presenting a basic and yet rigorous treatment of how the models of the atmosphere and the ocean are put together into a coupled system. Details are available at  Abstract: Coupled atmosphere-ocean models are at the core of numerical climate models. There is an extraordinarily broad class of coupled atmosphere-ocean models ranging from sets of equations that can be solved analytically to highly detailed representations of Nature requiring the most advanced computers for execution. The models are applied to subjects including the conceptual understanding of Earth’s climate, predictions that support human activities in a variable climate, and projections aimed to prepare society for climate change. The present book fills a void in the current literature by presenting a basic and yet rigorous treatment of how the models of the atmosphere and the ocean are put together into a coupled system. The text of the book is divided into chapters organized according to complexity of the components that are coupled. Two full chapters are dedicated to current efforts on the development of generalist couplers and coupling methodologies all over the worldRead more