Cerfacs Enter the world of high performance ...

Aerodynamics

Introduction

Numerical aerodynamics is a main topic for CERFACS. The CFD team develops numerical methods and tools that are used for academic cases but  more particularly in realistic aeronautical configuration : civil aviation, turbomachinery, helicopters or rockets.

This leads to simulate large computational domains and to use massive parallel computing platforms. Their efficient use is a fundamental CERFACS feature.

Research directions

The turbulence resolution is at the heart of our activity. For this, different approaches are used (RANS/URANS/LES/DNS) on multi-physics applications (aerocoustics, aerothermics or aeroelasticity). In addition to classic solvers and in order to prepare the next CFD solver generation, CERFACS invests on new approaches such as the very-high order methods or the Boltzmann method on lattices (LBM : Lattice Boltzmann Method).

This appears in the use of numerous solvers : elsA (http://elsa.onera.fr), AVBP, LaBS and Jaguar.

This diversity of approaches and solvers allows CERFACS to have an enlarged vision of the CFD world.

Collaborations

All the research activities are led in collaboration with numerous research centres (ONERA, Marseille University, Renault, Cenaero, IMFT, ECL, PPRIME, Sherbrooke University, DLR, von Karman Institute, Leceister University) as well as industrials ((Airbus, Airbus Hélicoptère, Airbus Defence and Space, Snecma, Turbomeca, SAFRAN Tech) through national or European programs.

Staying connected enables CERFACS to be at the forefront of what is being done in the numerical or aerodynamical simulation field.

 

NEWS

First 360-degrees Large-Eddy Simulation of a full engine

Jérôme DOMBARD |  17 June 2020

Within the PRACE project FULLEST (First fUlL engine computation with Large Eddy SimulaTion), a joint collaboration between CERFACS, SAFRAN and AKIRA technologies, Dr. C. Pérez Arroyo (post doctoral fellow at CERFACS) has carried out under the supervision of Dr. J. Dombard the first high-fidelity simulation of a part of the real engine DGEN380 (for now, from the fan to the combustion chamber). This 360-degrees integrated large-eddy simulation contains around two billion cells on the three instances, carried out with the AVBP code of CERFACS.  The CPU cost is obviously large but still within reach, performing around one turn of fan during 5 days over 14400 skylake cores. Post-treatments are in progress and already show, among other complex phenomena, a strong interaction between the high pressure compressor and the combustion chamber (see forthcoming paper GT2020-16288 C. Pérez Arroyo et al). Below a video showing: in the fan an isosurface at mid-height of the vein colored by the Mach number, in the high pressure compressor a gradient of density, in the bypass of the combustion chamber the static pressure and in the flame tube a temperature field. One of the goals of the project is to create a high-fidelity unsteady database to study interactions between modules and may help other teams to develop new lower order models and/or validate existing ones. Beyond the feasibility and the maturity of the AVBP code, this kind of calculation is an important milestone for the aeronautical industry and would allow to apprehend earlier in the design the effect of integration and installation and thus, to reduce the cycle and therefore the cost of the future aircraft engines. PRACE and GENCI CPU ressources and Safran Tech/DGAC fundings are gratefully acknowledged, along with the invaluable technical support at CERFACS: Dr. G. Staffelbach, Dr. F. Duchaine, Dr. L. Gicquel, Dr....Read more


B. Cuenot distinguished as Program Chair of international Symposium on Combustion

superadmin |  29 May 2020

B. Cuenot has been distinguished as Program Chair for the 39th International Symposium on Combustion, to be held in Vancouver (Canada) in 2022. The International Symposium on Combustion is a major event for the combustion community, where the current best research is presented.Read more

ALL NEWS