Cerfacs Enter the world of high performance ...

The 6 April 2023

Modal analysis of thermoacoustic instabilities using the AVSP solver

nasri |  

Cancelled

Cerfacs is Qualiopi certified for its training activities

Duration : 1 day / (6 hours)

Satisfaction index

In April 2022, 100% of participants in this training were very satisfied

(results collected from 3 respondents out of 3 participants, a response rate of 100%)

Abstract

The thermoacoustic AVSP code developed at Cerfacs is a general purpose Helmholtz solver which computes the frequency of oscillation, growth rate and spatial structure of the thermoacoustic modes of interest. Several test cases are considered during this one day training session in order to get the participants acquainted with the different features of AVSP (speed of sound inhomogeneities, complex valued boundary impedance, multi-perforated liners, acoustic flame coupling, multi-burner annular combustors, …).

Objective of the training

This training session aims at teaching to the partcipants the basics of combustion instabilities as well as how to use the thermoacoustic AVSP code.

Learning outcomes

On completion of this training course, you will be able to :

  • master the different features AVSP solver
  • use the AVSP solver.

Teaching methods

The training is an alternation of theoretical presentations and practical work. A multiple choice question allows the final evaluation. The training room is equipped with computers, the work can be done in sub-groups of two people.

Referent teacher: Laurent Gicquel

Target participants

This training session is for engineers, physicists, computer scientists and numerical analysts who wish to learn on thermoacoustic instabilities.

Prerequisites

In order to follow this course, you need to be able to:

  • use basic Linux commands (changing a directory, removing a file, …)
  • perform elementary operations on complex numbers (conjugate, polar form, …) and use Euler’s formula,
  • explain physical properties of waves (frequency, pulsation, wave number, …)
  • use basic notions of acoustic impedance
  • the training can take place in French or English depending on the audience, level B2 of CEFR is required;

In order to verify that the prerequisites are satisfied, the following questionnaire must be completed. You need to get at least 75% of correct answers in order to be authorized to follow this training session. If you don’t succeed it, your subscription will not be validated. You only have two chances to complete them.

Questionnaire 1 : https://forms.gle/6cCKwtESmBybhV8Q6

Registration

After completing the pre-requisite tests and obtaining at least 75% correct answers, you can register here

Before signing up, you may wish to report us any particular constraints (schedules, health, unavailability…)

at the following e-mail address : training@cerfacs.fr

Fee

  • Trainees/PhDs/PostDocs : 96 € excl. tax
  • CERFACS shareholders/CNRS/INRIA : 240 € excl. tax
  • Public : 480 € excl. tax

Program

(from 9h15 to 17h)
9h15 Welcome and coffee
9h30 Modeling thermoacoustic instabilities -Introduction

  • Equations of linear acoustics,
  • Modeling of the flame

10h15 How does AVSP work ?

  • Files
  • general organization
  • boundary conditions

11h00 Tutorials

  • 1D pipe (without and with impedance),
  • multiperforated cylinder,
  • 1D pipe with an active flame.

14h00 Following tutorials

  • 2D and 3D configurations with sudden enlargement,
  • complex geometries and post-processing,
  • industrial configurations (one single sector).

Evaluation of learning

A final exam will be conducted during the training session.

NEWS

ISAF project : To accelerate the transition to SAFs, SAFRAN and CERFACS have together obtained an allocation of 44 million CPU hours on the LUMI-C super-computer as part of the EuroHPC Regular Access call in November 2022.

CERFACS |  11 March 2023

The objective of the ISAF project is to study the impact of SAFs (Sustainable Aviation Fuels) on engine operation and pollutant emissions, using high-fidelity Large Eddy Simulations (LES). The methodology developed at CERFACS combines Analytically Reduced Chemistry (ARC) with a multi-component evaporation model to capture the effect of fuel. The target configurations range from academic burners (CRSB at CORIA, SSB at DLR Stuttgart), to isolated industrial injection systems (MICADO at ONERA, HERON at CORIA) and complete annular combustor configurations (BEARCAT at SAFRAN, NTNU test bench).Read more


A CERFACS article distinguished in Scilight (https://doi.org/10.1063/10.0017474)

CERFACS |  9 March 2023

The recently published paper in Physics of Plasma: "3D particle-in-cell study of the electron drift instability in a Hall Thruster using unstructured grids," by W. Villafana, B. Cuenot, and O. Vermorel ( attracted the attention of Scilight (), whose goal is to present the most interesting research in the physical sciences published in AIP journals."Read more

ALL NEWS