Cerfacs Enter the world of high performance ...

The 20 January 2020

Modal analysis of thermoacoustic instabilities using the AVSP solver

nasri |  

Announced
Deadline for registration: 15 days before the starting date of each training
Duration : 1 day / (6 hours)

Pre-registration

Abstract

The thermoacoustic AVSP code developed at Cerfacs is a general purpose Helmholtz solver which computes the frequency of oscillation, growth rate and spatial structure of the thermoacoustic modes of interest. Several test cases are considered during this one day training session in order to get the participants acquainted with the different features of AVSP (speed of sound inhomogeneities, complex valued boundary impedance, multi-perforated liners, acoustic flame coupling, multi-burner annular combustors, …).

Objective of the training

This training session aims at teaching to the partcipants the basics of combustion instabilities as well as how to use the thermoacoustic AVSP code.

Learning outcomes

On completion of this training course, you will be able to :

  • master the different features AVSP solver
  • use the AVSP solver.

Target participants

This training session is for engineers, physicists, computer scientists and numerical analysts who wish to learn on thermoacoustic instabilities.

Prerequisites

In order to follow this course, you need to be able to:

  • use basic Linux commands (changing a directory, removing a file, …)
  • perform elementary operations on complex numbers (conjugate, polar form, …) and use Euler’s formula,
  • explain physical properties of waves (frequency, pulsation, wave number, …)
  • use basic notions of acoustic impedance.

In order to verify that the prerequisites are satisfied, the following questionnaire must be completed. You need to get at least 75% of correct answers in order to be authorized to follow this training session. If you don’t succeed it, your subscription will not be validated. You only have two chances to complete them.

Questionnaire 1 : https://forms.gle/6cCKwtESmBybhV8Q6

Scientific contact 

Franck Nicoud

Fee

  • Trainees/PhDs/PostDocs : 70 €
  • CERFACS shareholders/CNRS/INRIA : 200 €
  • Public : 400 €

Program

( from 9h15 to 17h)
9h15 Welcome and coffee
9h30 Modeling thermoacoustic instabilities -Introduction

  • Equations of linear acoustics,
  • Modeling of the flame

10h15 How does AVSP work ?

  • Files
  • general organization
  • boundary conditions

11h00 Tutorials

  • 1D pipe (without and with impedance),
  • multiperforated cylinder,
  • 1D pipe with an active flame.

14h00 Following tutorials

  • 2D and 3D configurations with sudden enlargement,
  • complex geometries and post-processing,
  • industrial configurations (one single sector).

Final examination

A final exam will be conducted during the training session.

Pre-registration

NEWS

Continuity of activity of the Cerfacs during the Covid-19 pandemic

superadmin |  20 March 2020

On Monday 16 March 2020, in the context of the rapidly evolving COVID-19 epidemic, Cerfacs decided to reorganize its activities by implementing a Business Continuity Plan (BCP) and deploying teleworking facilities for all its employees. All staff members thus continue to carry out their full mission.Read more


A fiery wakeup call for climate science

superadmin |  26 February 2020

The extent of the recent wildfires in Australia significantly exceeded the projections of any member of the multi-model CMIP archive.  This highlights how current multi-model ensembles may be under-representing the risks of natural disasters under climate change.  Limited coupled system process representation in most models coupled with a lack of parameter uncertainty exploration means that some risks are not explored by the existing international multi-model framework.  This calls for a reassessment of how to focus climate model development on providing robust risk quantification for those impacts which most directly affect society. Sanderson, B.M., Fisher, R.A. A fiery wake-up call for climate science. Nat. Clim. Chang. (2020) nature.com Media coverage BBC Sydney Morning Herald The Guardian Wired The Daily Express YahooRead more

ALL NEWS