Cerfacs Enter the world of high performance ...

The 17 December 2015 at 14h00

PhD Defense: Dorian LAHBIB – Aerothermal modeling of mutiperforated plate cooling for Large Eddy Simulations

Marie LABADENS |  CERFACS Salle JCA, 42 avenue Gaspard Coriolis Toulouse |  0 comment |  

Abstract

Effusion cooling is frequently used to lower the thermal constraints of combustion chambers in aeronautical gas turbines. It consists of injecting a cold air ow through submillimetric holes drilled in the liners. The resolution of the ow in the near-wall regions in 3-D combustion chamber calculations is out of reach in terms of computational cost due to the presence of small scales. Models were proposed to reduce the computational cost in previous works. An adiabatic homogeneous model, to represent the aerodynamics around the plate, based on the resolved Large Eddy Simulation of an infinite perforated plate was proposed. It was later extended to model the aerothermal behavior of the ow, based on resolved RANS calculations. The objectives of this work are to evaluate the homogeneous aerothermal predictions regarding the flux repartition and to propose a model to account for effusion cooling in industrial computations of the flow around the perforated plate. Large Eddy Simulations coupled with a thermal solver have been performed in order to get insight of the flow organization and the heat flux repartition around the plate. Two configurations at a representative aero engine operating point are studied: two channels separated by 12 converging rows with either perforations oriented in the main flow direction or with an angle of deviation. The data from the Large Eddy Simulations have been compared with the homogeneous model and a methodology is proposed to tackle the heat flux miscalculation due to the numerical implementation. This methodology is not limited to the homogeneous approach, it extends to other approaches such as the thickened perforation model presented in this work which represents enlarged holes based on the size of the cell relative to the hole diameter.

Jury

Franck NICOUD         Université de Montpellier                          Advisor
Antoine DAUPTAIN    CERFACS                                                 Co Advisor
Pascal BRUEL           Université de Pau des Pays de l’Adour     Referee
Marc-Paul ERRERA  ONERA                                                      Referee
Bruno KOOBUS        Université de Montpellier                            Member
Eric SERRE              Ecole Centrale de Marseille                        Member

I leave a comment

NEWS

Thierry Poinsot officially entered the French Academy of Sciences

CERFACS |  8 November 2021

Thierry Poinsot officially entered the French Academy of Sciences on October 12. See presentation here :Read more


The AVBP code from CERFACS at the heart of for PRACE projects from the 23rd call

CERFACS |  30 September 2021

Cerfacs is involved in three PRACE projects of the 23rd call for which hour allocation runs from 01/10/2021 to 30/09/2022. Researchers from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) and IMFT (UMR 5502) laboratories have earned projects entirely based on the use of the LES solver developed by Cerfacs AVBP and involve the support of experts from the CFD and COOP teams underling the importance and effectiveness of collaborations between French labs and Cerfacs. Alexis Giauque from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) has obtained not only one but two PRACE projects! The first project LESFAN (RA0101, 30 000 000 CPU hours on Irene/Rome TGCC) is based on the use of AVBP in the turbomachinery version to study the generation of noise by a fan of a real airplane engine. The second, PRACE-EDGES (RA0101, 40 000 000 CPU hours on Irene/Rome TGCC) focuses on LES modeling of dens gas in complex geometries. To do so, the LMFA Team has developed advanced thermodynamic closures in AVBP allowing the direct simulation of such flows. Laurent Selle from IMFT (UMR 5502) has received CPU hours for the GASTON project (RA0061, 30 000 000 CPU hours on Marenostrum BSC) which aims to study the structure of hydrogen flames in porous materials. For this, IMFT and Cerfacs will perform coupled simulations considering the reactive flow with AVBP as well as the conduction in the porous medium with AVTP which is known to play an central role in the flame stabilization process. Carlos Perez Arroyo from IMFT (UMR 5502) received 16 Mh CPU hours on Joliot-Curie Skylake partition to support his project WONDER.Read more

ALL NEWS