Cerfacs Enter the world of high performance ...

The 17 June 2021 at 14h00

PhD defense: Thomas ASTOUL – “Towards improved lattice Boltzmann aeroacoustic simulations with non-uniform grids: application to landing gears noise prediction.”



Predicting landing gear noise is a major concern for an aircraft manufacturer, since it contributes to about 40% of the total aircraft noise during the approach phases. Flight tests and those carried out in anechoic wind tunnels have enabled the understanding of noise generation mechanisms, as well as the design of low noise devices. However, these methods are time consuming and costly to set up. The use of computational fluid dynamics (CFD) is thus emerging as an essential complement to these experimental approaches. The flow around landing gears is complex and highly unsteady, and the noise generated is broadband by nature. Given these characteristics, it is therefore necessary to use unsteady methods with high-fidelity turbulence modeling such as Large Eddy Simulation (LES), to predict these acoustic sources. The lattice Boltzmann method (LBM) is a numerical approach that has recently shown a strong potential for this type of application, thanks to its accuracy, its low restitution time and its ability to handle complex geometries. It is consequently adopted for this thesis. Aeroacoustic simulations require a high level of accuracy since acoustic fluctuations, which are several orders of magnitude smaller than aerodynamic ones, must be properly captured and propagated. Nevertheless, the non-conforming grid interfaces used in LBM have the inconvenience of generating spurious vorticity and acoustics that propagate in the fluid core, which may affect the noise predictions. The PhD objective is to develop new grid coupling models in the “LaBS/ProLB” LBM solver, and to validate them in the context of landing gears aeroacoustics. Two main directions are addressed to overcome these phenomena: 1/ A study of the numerical scheme in the fluid core is performed, highlighting the involvement of non-hydrodynamic modes, specific to the LBM, in the generation of vorticity and of a portion of the spurious acoustics generated at mesh interfaces. After a thorough study of the implication of these modes, an appropriate collision model (H-RR) is chosen to filter them out during a simulation. The stability and accuracy of several LBM schemes including the H-RR one under typical aeroacoustic simulation conditions are also investigated. This study highlights stability issues, as well as questionable precision of many advanced LBM schemes available in the literature. 2/ A direct coupling algorithm between two grids of different resolution is proposed. This algorithm allows to greatly improve the accuracy of the non-conforming grid interfaces, and hence to reduce the spurious acoustic emission produced by the crossing of vortices composing the wakes. Finally, the LAGOON landing gear allows for the validation of these numerical ingredients. An aerodynamic study and then an aeroacoustic one via a coupling with an acoustic propagation code based on the Ffowcs Williams and Hawkings analogy (FW-H) are conducted. The limitations of this analogy in its solid formulation, mostly used to predict landing gear noise, are exposed. Lastly, the effect of extra components of increasing complexity on the noise generated is investigated.

Keywords: Lattice Boltzmann method,Landing gear noise,Grid refinement,Aeroacoustics,CFD,CFD/CAA coupling


AdvisorM. Pierre SAGAUTAix Marseille Université
RefereeM. Damiano CASALINOUniversité de technologie de Delft
RefereeM. Jonas LATTUniversité de Genève
MemberM. Alois SENGISSENAirbus Operations SAS
MemberM. Stéphane MOREAUUniversité de Sherbrooke
MemberMme Véronique FORTUNÉUniversité de Poitiers
Invited memberM. Jean-François BOUSSUGECERFACS




A bronze medal to Cerfacs for “Allons-Y À Vélo” !

CERFACS |  26 July 2021

A bronze medal to Cerfacs for "Allons-Y À Vélo" ! Cerfacs is on the podium for its cycling regularity during the "Allons-Y À Vélo" period (May 25 - June 25) in its category (100-500 employees).During this period, 37% of Cerfacs employees came to work by bike during at least 4 consecutive days. "Allons-Y À Vélo" is a campaign organised by the association "2 Pieds 2 Roues" and "La Maison du Vélo de Toulouse" to promote the use of the bicycle for every day travels; all details can be found on allonsyavelo.le-pic.org . Cerfacs encourages its employees to use their bicycle to come to work as they benefit from the bicycle mileage allowance (FMD for Forfait Mobilité Durable) of up to 500 Euros per year.Read more

The H2OPE project wins the prize Joseph Fourier 2021

CERFACS |  26 July 2021

The H2OPE project wins the prize Joseph Fourier 2021 The prize, launched by Atos and GENCI, aims to reward the work of researchers, academics and industry in two strategic areas: Advanced Computing (HPC, Quantum, Edge) and Artificial Intelligence, and, in the 2021 edition , gives particular importance to Decarbonation. The 1st Prize was awarded to the H2OPE or “H2OPErability for safe and clean gas turbine engines” project from CERFACS in Toulouse. This project aims, via the LES AVBP code, to model at high resolution a mixed combustion process associating conventional fuels with hydrogen (bi-fuels) as one of the most promising technical solutions to achieve "net zero emissions" of CO2 in the industrial sector. It was presented by Walter Agostinelli, Davide Laera, Laurent Gicquel, and Thierry Poinsot. Press release :Read more