Cerfacs Enter the world of high performance ...

Parallel Algorithms Team

The Parallel Algorithms Project conducts a dedicated research to address the solution of problems in applied mathematics by proposing advanced numerical algorithms to be used on massively parallel computing platforms. The Parallel Algorithms Project is especially considering problems known to be out of reach of standard current numerical methods due to, e.g., the large-scale nature or the nonlinearity of the problem, the stochastic nature of the data, or the practical constraint to obtain reliable numerical results in a limited amount of computing time. This research is mostly performed in collaboration with other teams at CERFACS and the shareholders of CERFACS as outlined in this report.

This research roadmap is known to be quite ambitious and we note that the major research topics have evolved over the past years. The main current focus concerns both the design of algorithms for the solution of sparse linear systems coming from the discretization of partial differential equations and the analysis of algorithms in numerical optimization in connection with several applications including data assimilation. These research topics are often interconnected as it is the case for e.g. large-scale inverse problems (so called big data inverse problems) or the solution of nonlinear systems that require approximate solutions of linearized systems. These research developments rely on a past research expertise in numerical analysis exploiting the structure of the problem in scientific computing, especially in qualitative computing.

A strong focus is given on mathematical aspects. Indeed efficient parallel algorithms are proposed together with their mathematical analysis. Main properties such as convergence of iterative methods, scalability properties, convergence to local or global minima are theoretically investigated.

Solution methods of sparse linear systems are considered in a broad sense by tackling both sparse direct methods and projection based iterative methods. These methods can also be combined to derive hybrid algebraic methods close to domain decomposition or multiscale methods. In addition to graph theory, these activities rely on a strong expertise in software development in linear algebra and on an up-to-date knowledge of the parallel computing platforms.

Optimization methods do occur in several applications at CERFACS. Most often the main goal is to improve the performance of a given system. The Parallel Algorithms Project is mainly focussing on both differentiable optimization and derivative-free optimization. The main research topics concern the convergence to local or global minima and the efficiency of the algorithms in practice.

The Parallel Algorithms Project is also deeply involved in the design and analysis of algorithms for data assimilation. Algorithms related to differentiable optimization or derivative-free optimization are considered together with filtering techniques. All these algorithms must be adapted and improved before tackling potential applications in seismic, oceanography, atmospheric chemistry or meteorology. The Parallel Algorithms Project has notably developed a specific expertise in the field of correlation error modelling based on the iterative solution of an implicitly formulated diffusion equation.

Finally the Parallel Algorithms Project takes an active part in the Training programme at CERFACS and is also regularly organizing seminars, workshops and international conferences in numerical optimization, numerical linear algebra and data assimilation.

 

NEWS

The AVBP code from CERFACS at the heart of three PRACE projects from the 23rd call

CERFACS |  30 September 2021

Cerfacs is involved in three PRACE projects of the 23rd call for which hour allocation runs from 01/10/2021 to 30/09/2022. Researchers from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) and IMFT (UMR 5502) laboratories have earned projects entirely based on the use of the LES solver developed by Cerfacs AVBP and involve the support of experts from the CFD and COOP teams underling the importance and effectiveness of collaborations between French labs and Cerfacs. Alexis Giauque from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) has obtained not only one but two PRACE projects! The first project LESFAN (RA0101, 30 000 000 CPU hours on Irene/Rome TGCC) is based on the use of AVBP in the turbomachinery version to study the generation of noise by a fan of a real airplane engine. The second, PRACE-EDGES (RA0101, 40 000 000 CPU hours on Irene/Rome TGCC) focuses on LES modeling of dens gas in complex geometries. To do so, the LMFA Team has developed advanced thermodynamic closures in AVBP allowing the direct simulation of such flows. Laurent Selle from IMFT (UMR 5502) has received CPU hours for the GASTON project (RA0061, 30 000 000 CPU hours on Marenostrum BSC) which aims to study the structure of hydrogen flames in porous materials. For this, IMFT and Cerfacs will perform coupled simulations considering the reactive flow with AVBP as well as the conduction in the porous medium with AVTP which is known to play an central role in the flame stabilization process.Read more


watch the online contest ”my thesis in 180 sec” organized for Marie Curie actions

CERFACS |  24 September 2021

Next Thursday, Sept 30th the #FallingWallsLab #MSCA research presentation competition will take place, . This is a competition in which 15 researchers compete to deliver the best presentation of their research topic in the format "my thesis in 180 seconds" . Javier Crespo-Anadon, 3rd year PhD student in the CFD team is one of the 15 finalists and he will present this thesis topic: ignition in spinning combustion engines for a reduction in CO2 emissions! You can watch it online on the above website on Sept 30th at 3pm. I encourage you to go to the website and register!  You'll be able to listen to the other participants' pitches and vote for your favorite. Come and see for yourself what kind of research the EU funds!Read more

ALL NEWS