Compute the radial distribution by performing an azimuthal average over an ‘x’-plane. The mass-flow variable is used as the averaging variable ($$\displaystyle \rho v_x \partial \theta$$)

## Parameters¶

• base: Base

The base must contain:

• family_name: str, default= None

The name of the family from which the percent will be computed.

• r_percent: tuple(float), default= None

The radius value given as a percentage of the radius. The argument should be a tuple of min and max values. These limits the lower/upper bounds of the radial distribution. If not given, the lower/upper bounds of the radial distribution are computed.

• x_value: float, default= None

The absolute position value of the plane.

• r_value: tuple(float), default= None

The radius value. The argument should be a tuple of min and max values.

• vectors: list(tuple(str), default= []

If the base contains vectors, they must be rotated. It is assumed that they are expressed in cartesian coordinates.

• var-equ: list(str), default= []

Compute these values/equations on the ‘x’-plane. Values and equations must be ordered so as to avoid dependency issues.

• num: int, default= 100

The number of points in the radial distribution.

## Preconditions¶

The coordinate variables must be available at node and the integration will be performed on all the other variables.

## Main functions¶

class antares.treatment.turbomachine.TreatmentAzimuthalMean.TreatmentAzimuthalMean
execute()

Execute the treatment.

Returns:

Return type:

Base

## Example¶

import os

if not os.path.isdir('OUTPUT'):
os.makedirs('OUTPUT')

import numpy as np

from antares import Reader, Treatment, Writer

#

r['filename'] = os.path.join('..', 'data', 'ROTOR37', 'ELSA_CASE', 'MESH',
'mesh_<zone>.dat')
r['zone_prefix'] = 'Block'
r['topology_file'] = os.path.join('..', 'data', 'ROTOR37', 'ELSA_CASE',
'script_topo.py')
r['shared'] = True
print(base.families)

r['base'] = base
r['filename'] = os.path.join('..', 'data', 'ROTOR37', 'ELSA_CASE', 'FLOW',
'flow_<zone>.dat')
r['zone_prefix'] = 'Block'
r['location'] = 'cell'

base.set_computer_model('internal')

# Needed for turbomachinery dedicated treatments
base.cell_to_node()
base = base.get_location('node')
print(base.families)

base.compute('psta')
base.compute('Pi')
base.compute('theta')
P0_INF = 1.9
base.compute('MachIs = (((%f/psta)**((gamma-1)/gamma)-1.) * (2./(gamma-1.))  )**0.5' % P0_INF)

# Definition of the treatment
t = Treatment('azimuthalmean')
t['base'] = base
t['num'] = 60

writer = Writer('column')  # for 2D plot

# Azimuthal mean
res_dir = os.path.join('OUTPUT', 'AZ_MEAN')
if not os.path.isdir(res_dir):
os.makedirs(res_dir)

NUM = 9
x = np.linspace(-12.5, 12.5, NUM)
for i in range(0, NUM):
print('radial distribution at x = {}'.format(x[i]))

t['x_value'] = x[i]
azim_base = t.execute()

writer['filename'] = os.path.join(res_dir, 'flow_azim_%i.plt' % x[i])
writer['base'] = azim_base[:, :, ('R', 'rovx', 'vx', 'ro')]
writer.dump()