Cp (Pressure Coefficient)¶
Computation of pressure coefficient
Parameters¶
- base:
Base
The base must contain:
the mesh coordinates x, y, and z
the solution
‘hb_computation’ as an
Base.attrs
(if HB/TSM type).
- base:
- coordinates: list(str)
The variable names that define the set of coordinates.
- vectors: tuple/list(tuple(str)), default= []
Component names of vectors that need to be rotated. It is assumed that these are given in the cartesian coordinate system.
- rho_inf: float, default= ‘in_attr’
The infinite density corresponding to the reference state.
- v_inf: float, default= ‘in_attr’
The infinite axial velocity corresponding to the reference state.
- p_inf: float, default= ‘in_attr’
The infinite static pressure corresponding to the reference state.
- family_name: str
The name of the family from which the percent will be computed and on which Cp is computed.
- percent: float, default= None
The percentage relative to the family to determine the absolute position value.
- position: float, default= None
The absolute position value relative to the family where the cut must be made.
- form: int in [1,2,3], default= 1
The definition of Cp (see below).
Main functions¶
- class antares.treatment.turbomachine.TreatmentCp.TreatmentCp¶
- execute()¶
Execute the treatment.
Compute the pressure coefficient at a given radius percent of the given blade. Thee formulae for Cp are proposed:
form
1: \(\displaystyle Cp_1 = - \frac{p - p_{inf}}{\rho_{inf} n^2 D^2}\)form
2: \(\displaystyle Cp_2 = 2 \frac{p - p_{inf}}{\rho_{inf} (v_{inf} n^2 r^2)}\)form
3: \(\displaystyle Cp_3 = 2.0 \frac{p - p_{inf}} {\rho_{inf} v_{inf} ^ 2}\).The mean and the harmonics of Cp can also be computed if duplication is enabled. Note that the amplitude of the harmonics are divided by the mean value.
- Returns:
- Return type:
Example¶
import os
if not os.path.isdir('OUTPUT'):
os.makedirs('OUTPUT')
from antares import Reader, Treatment, Writer
#
# Data can be downloaded from
# https://cerfacs.fr/antares/downloads/application1_tutorial_data.tgz
r = Reader('bin_tp')
r['filename'] = os.path.join('..', 'data', 'ROTOR37', 'ELSA_CASE', 'MESH',
'mesh_<zone>.dat')
r['zone_prefix'] = 'Block'
r['topology_file'] = os.path.join('..', 'data', 'ROTOR37', 'ELSA_CASE',
'script_topo.py')
r['shared'] = True
base = r.read()
print(base.families)
r = Reader('bin_tp')
r['base'] = base
r['filename'] = os.path.join('..', 'data', 'ROTOR37', 'ELSA_CASE', 'FLOW',
'flow_<zone>.dat')
r['zone_prefix'] = 'Block'
r['location'] = 'cell'
r.read()
base.set_computer_model('internal')
# Needed for turbomachinery dedicated treatments
base.cell_to_node()
base = base.get_location('node')
print(base.families)
base.compute('psta')
base.compute('Pi')
base.compute('theta')
P0_INF = 1.9
base.compute('MachIs = (((%f/psta)**((gamma-1)/gamma)-1.) * (2./(gamma-1.)) )**0.5' % P0_INF)
# Definition of the treatment
t = Treatment('Cp')
t['base'] = base
t['family_name'] = 'BLADE'
t['coordinates'] = ['x', 'y', 'z']
t['rho_inf'] = 0.873
t['p_inf'] = 0.59
t['v_inf'] = 1.5
t['form'] = 3
# Cp
res_dir = os.path.join('OUTPUT', 'CP')
if not os.path.isdir(res_dir):
os.makedirs(res_dir)
writer = Writer('column')
for loc in [0.25, 0.5, 0.75, 0.9]: # radius in percent
t['percent'] = loc
Cp_blade = t.execute()
writer['filename'] = os.path.join(res_dir, 'Cp_%s.dat' % (loc))
writer['base'] = Cp_blade
writer.dump()