Cerfacs Enter the world of high performance ...

The 6 May 2015

Phd Defense: Dimitrios PAPADOGIANNIS – Coupled Large Eddy Simulations of combustion chamber-turbine interactions

Marie LABADENS |  CERFACS, Conference room Jean-Claude André |  

Abstract:
Modern gas turbines are characterized by compact designs that enhance the interactions between its different components. Combustion chamber-turbine interactions, in particular, are critical as they may alter the aerothermal flow field of the turbine which can drastically impact the engine life duration. Current state-of-the-art treats these two components in a decoupled way and does not take into account their interactions. This dissertation proposes a coupled approach based on the highfidelity Large Eddy Simulation (LES) formalism that can take into account all the potential paths of interactions between components. In the first part of this work, an overset grid method is proposed to treat rotor/stator configurations in a rigorous fashion that is compatible with the LES solver AVBP. This interface treatment is shown not to impact the characteristics of the numerical schemes on a series of academic test cases of varying complexity. The approach is then validated on a realistic high-pressure turbine stage. The results are compared against experimental measurements and the influence of different modeling and simulation parameters is evaluated. The second part of this work is dedicated to the prediction of combustion chamber-turbine interactions using the developed methodologies. The first type of interactions evaluated is the indirect combustion noise generation across a high-pressure turbine stage. This noise arises when combustor-generated temperature heterogeneities are accelerated in the turbine. To simplify the simulations the heterogeneities are modeled by sinusoidal temperature fluctuations injected in the turbine through the boundary conditions. The noise generation mechanisms are revealed by such LES and the indirect combustion noise is measured and compared to an analytical theory and 2D predictions. The second application is a fully-coupled combustor-turbine simulation that investigates the interactions between the two components from an aerothermal point of view. The rich flow characteristics at the turbine inlet, issued by the unsteady combustion in the chamber, are analyzed along with the migration of the temperature heterogeneities. A standalone turbine simulation serves as a benchmark to compare the impact of the fully coupled approach.

Jury:
Paul G. Tucker                         University of Cambridge      Referee
Edwin T.A. van der Weide        University of Twente            Referee
Pascal Ferrand                        Ecole Centrale de Lyon        Member
Stéphane Moreau                    Université de Sheerbroke    Member
Vincent Brunet                         CFD Team Safran Tech       Member
Gilles Leroy                             Turbomeca                           Industrial member
Laurent Y. Gicquel                   CERFACS                            Advisor
Florent Duchaine                    CERFACS                             Co-advisor

NEWS

Thierry Poinsot officially entered the French Academy of Sciences

CERFACS |  8 November 2021

Thierry Poinsot officially entered the French Academy of Sciences on October 12. See presentation here :Read more


The AVBP code from CERFACS at the heart of for PRACE projects from the 23rd call

CERFACS |  30 September 2021

Cerfacs is involved in three PRACE projects of the 23rd call for which hour allocation runs from 01/10/2021 to 30/09/2022. Researchers from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) and IMFT (UMR 5502) laboratories have earned projects entirely based on the use of the LES solver developed by Cerfacs AVBP and involve the support of experts from the CFD and COOP teams underling the importance and effectiveness of collaborations between French labs and Cerfacs. Alexis Giauque from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) has obtained not only one but two PRACE projects! The first project LESFAN (RA0101, 30 000 000 CPU hours on Irene/Rome TGCC) is based on the use of AVBP in the turbomachinery version to study the generation of noise by a fan of a real airplane engine. The second, PRACE-EDGES (RA0101, 40 000 000 CPU hours on Irene/Rome TGCC) focuses on LES modeling of dens gas in complex geometries. To do so, the LMFA Team has developed advanced thermodynamic closures in AVBP allowing the direct simulation of such flows. Laurent Selle from IMFT (UMR 5502) has received CPU hours for the GASTON project (RA0061, 30 000 000 CPU hours on Marenostrum BSC) which aims to study the structure of hydrogen flames in porous materials. For this, IMFT and Cerfacs will perform coupled simulations considering the reactive flow with AVBP as well as the conduction in the porous medium with AVTP which is known to play an central role in the flame stabilization process. Carlos Perez Arroyo from IMFT (UMR 5502) received 16 Mh CPU hours on Joliot-Curie Skylake partition to support his project WONDER.Read more

ALL NEWS