Cerfacs Enter the world of high performance ...

The 16 March 2021 at 14h00

PhD defense : Rem-Sophia MOURADI – Non-linear data-driven modelling on multidimensional fields: an application to hydro-morphodynamic coastal flows

Nathalie BROUSSET |  zoom : https://inp-toulouse-fr.zoom.us/j/97261515534 |  

Abstract :

This thesis contributions belong to the general framework of data-based and physically- based data-driven modelling. An efficient approach for Machine Learning (ML), as well as a speed-up technique for Data Assimilation (DA), have been developed. For this purpose, Dimensionality Reduction (DR) and stochastic spectral modelling were used. In particular, a coupling between Proper Orthogonal Decomposition (POD) and Polynomial Chaos Expansion (PCE) is at the center of this thesis contributions.

POD and PCE have widely proved their worth in their respective frameworks, and the idea was to combine them for optimal field measurement based forecasting, and ensemble- based acceleration technique for variational DA. For this purpose, (i) a physically inter- pretable POD-PCE ML for non-linear multidimensional fields was developed in the Neural Networks (NN) paradigm and (ii) a hybrid ensemble-variational DA approach for para- metric calibration was proposed with adapted calculations of POD-PCE metamodelling error covariance matrix.

The proposed techniques were assessed in the context of an industrial application, for the study of sedimentation in a coastal power plant's water intake. Water intakes ensure plant cooling via a pumping system. They can be subject to sediment accumulation, which represents a clogging risk and requires costly dredging operations. For monitoring and safety reasons, the power plant stakeholders asked for a predictive tool that could be run in operational conditions. Data collected during many years of monitoring in the study area were provided. The objective was then to achieve comprehensive analysis of the flow and sediment dynamics, as well as to develop an optimal model in terms of forecasting accuracy, physical meaning, and required computational time. Uncertainty reduction and computational efficiency were therefore starting points for all proposed contributions.

In addition to the previously proposed methods, Uncertainty Quantificiation (UQ) studies were undertaken. Specifically, (i) uncertainties related to tidal hydrodynamic modelling, resulting from common modelling choices (domain size, empirical closures) were investigated. POD patterns resulting from measurements and numerical scenarios were compared; (ii) UQ study of the sediment transport modelling in the intake, in a high- dimensional framework, was achieved. Investigations were based on appropriate DR. In fact, POD patterns of Boundary Conditions (BC) and Initial Conditions (IC), resulting from hydrodynamic simulations outputs and from bathymetry measurements respectively, were used.

A perspective of this work would be to implement a hybrid POD-PCE model, using both measured and numerically emulated data, to better understand and predict complex physical processes. This approach would offer a complete, fast and efficient tool for operational predictions.

Keywords :

data-based prediction, physically-based data-driven modelling, statistical learning, data assimilation, uncertainty quantification, sensitivity analysis, geosciences, hydrodynamics, sediment transport, coastal intake.

Jury :

Olivier Le Maitre, Professeur des Universités, Centre de Mathématiques Appliquées of the École Polytechnique (CMAP) (Rapporteur)

Pierre-Olivier Malaterre, Chercheur, INRAE Montpellier (Rapporteur)

Clémentine Prieur, Professeure des Universités, Université Grenoble Alpes, (Examinatrice)

Christine Keribin, Maître de conférences, Université Paris-Sud, (Examinatrice)

Hélène Roux, Maître de conférences, IMFT, (Examinatrice)

Florent Lyard, Professeur des Universités, LEGOS (Examinateur)

Olivier Thual, Professeur des Universités, Institut National Polytechnique de Toulouse (Directeur de thèse)

Cédric Goeury, Ingénieur-Chercheur, EDF R&D LNHE (encadrant principal)

Fabrice Zaoui, Ingénieur-Chercheur, EDF R&D LNHE (encadrant)

Pablo Tassi, Ingénieur-Chercheur, EDF R&D LNHE (encadrant)

NEWS

NextSim General Assembly and TC meeting

CERFACS |  16 September 2021

The General Assembly and TC Meeting took place on 15-16 September 2021. CERFACS is involved in the NextSim project (). The primary objective is to increase the capabilities of Computational Fluid Dynamics tools on extreme-scale parallel computing platforms for aeronautical design. This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement N° 956104. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, France, Germany. This project has received funding from the Agence Nationale de la Recherche (ANR) under grant agreement N° ANR-20-EHPC-0002-02. For more information, please visit Read more


Sophie Valcke from Cerfacs co-authored a new book on atmosphere-ocean modelling

CERFACS |  18 August 2021

new book "Atmosphere-Ocean Modelling - Couling and Couplers” by Prof. Carlos R Mechoso, Prof. Soon-Il An and Dr Sophie Valcke has just been published by World Scientific. The present book fills a void in the current literature by presenting a basic and yet rigorous treatment of how the models of the atmosphere and the ocean are put together into a coupled system. Details are available at  Abstract: Coupled atmosphere-ocean models are at the core of numerical climate models. There is an extraordinarily broad class of coupled atmosphere-ocean models ranging from sets of equations that can be solved analytically to highly detailed representations of Nature requiring the most advanced computers for execution. The models are applied to subjects including the conceptual understanding of Earth’s climate, predictions that support human activities in a variable climate, and projections aimed to prepare society for climate change. The present book fills a void in the current literature by presenting a basic and yet rigorous treatment of how the models of the atmosphere and the ocean are put together into a coupled system. The text of the book is divided into chapters organized according to complexity of the components that are coupled. Two full chapters are dedicated to current efforts on the development of generalist couplers and coupling methodologies all over the worldRead more

ALL NEWS