AVBP variable_gamma modeling¶
Get additional variables from AVBP conservative variables. The species_database.dat file is needed. The formulas are set for 3D solutions.
- antares.eqmanager.formula.avbp.equations.Cp(DictMassFractions, T)¶
Mass Heat capacity of the mixture at constant pressure [J/K/kg].
\(C_p(T) = \sum_{k=1}^N Y_k C_{p,k}(T)\)
Computed with static temperature and AVBP’s species_database.dat.
- antares.eqmanager.formula.avbp.equations.Cv(DictMassFractions, T)¶
Mass Heat capacity of the mixture at constant volume [J/K/kg].
\(C_v(T) = \sum_{k=1}^N Y_k C_{v,k}(T)\)
Computed with static temperature and AVBP’s species_database.dat.
- antares.eqmanager.formula.avbp.equations.DictMassFractions(rho)¶
Get the dictionary of the species.
This dictionary is involved in the mixture and their mass fractions.
DictMassFractions is a specific keyword that might be called in functions’ arguments. It retrieves the following dictionary: \(DictMassFractions = \{'k': [Y_k], ...\}_{k \in \{Specie1, ...\}}\) where SpecieX are the species involved in the mixture.
- antares.eqmanager.formula.avbp.equations.Ec(u, v, w)¶
Mass mixture kinetic energy [J/kg].
\(E_c = \frac{1}{2}(u^2 + v^2 + w^2)\)
- antares.eqmanager.formula.avbp.equations.Eint(Etotal, Ec)¶
Mass internal energy [J/kg].
\(E_{int} = E_{total} - E_c\)
- antares.eqmanager.formula.avbp.equations.Etotal(rhoE, rho)¶
Mass mixture total energy [J/kg].
\(E_{total} = \rho E_{total}/\rho\)
- antares.eqmanager.formula.avbp.equations.Htotal(hs, Ec)¶
Mixture total mass enthalpy [J/kg].
\(H_{total}=\sum_{k=1}^N Y_k h_{s,k}+e_c\)
- antares.eqmanager.formula.avbp.equations.Htr(hs, W)¶
Relative total enthalpy (non-chemical).
- antares.eqmanager.formula.avbp.equations.Mis(Ptris, P, gamma)¶
Isentropic mach number [-].
Need a reference total isentropic pressure \(P_{tris}\).
\(M_{is}=\sqrt{2\frac{(P_{tris}/P)^{\frac{\gamma-1}{\gamma}}-1}{\gamma-1}}\)
- antares.eqmanager.formula.avbp.equations.P(rho, T, rgas)¶
Static pressure [Pa].
\(P = \rho r_{gas} T\)
- antares.eqmanager.formula.avbp.equations.P_KURT(P, P2, P3, P4)¶
Pressure kurtosis [Pa^4].
Requires an averaged AVBP solution with high stat.
- antares.eqmanager.formula.avbp.equations.P_RMS(P, P2)¶
Pressure root mean square [Pa].
Requires an averaged AVBP solution.
- antares.eqmanager.formula.avbp.equations.P_SKEW(P, P2, P3)¶
Pressure skewness [Pa^3].
Requires an averaged AVBP solution with high stat.
- antares.eqmanager.formula.avbp.equations.Ptotal(DictMassFractions, rgas, P, T, Ttotal)¶
Absolute total pressure [Pa].
\(P_{total}=P_s\exp(\int^{T_{total}}_{T_s}\frac{C_p}{rT}dT)\)
- antares.eqmanager.formula.avbp.equations.Ptotal_RMS(Ptotal, Ptotal2)¶
Total pressure root mean square [Pa].
Requires an averaged AVBP solution.
- antares.eqmanager.formula.avbp.equations.Ptotal_gamma0D(P, coeff_gamma0D, exp_gamma0D)¶
Useful when computing under \(\gamma\) constant assumption.
\(Ptotal_{\gamma_{0D}} = P (1 + \frac{\gamma_{0D} - 1}{2} M_{\gamma_{0D}}^2)^{\frac{\gamma_{0D}}{\gamma_{0D} - 1}}\)
- antares.eqmanager.formula.avbp.equations.Ptr(DictMassFractions, rgas, P, T, Ttr)¶
Relative total pressure.
- antares.eqmanager.formula.avbp.equations.R(z, y)¶
Compute the radius under the assumption x is the rotation-axis.
- antares.eqmanager.formula.avbp.equations.T(DictMassFractions, Eint)¶
Static temperature [K].
Computed from the internal energy and the AVBP’s species_database.dat.
- antares.eqmanager.formula.avbp.equations.T_KURT(T, T2, T3, T4)¶
Static temperature kurtosis [K^4].
Requires an averaged AVBP solution with high stats.
- antares.eqmanager.formula.avbp.equations.T_RMS(T, T2)¶
Static temperature root mean square [K].
Requires an averaged AVBP solution.
- antares.eqmanager.formula.avbp.equations.T_SKEW(T, T2, T3)¶
Static temperature skewness [K^3].
Requires an averaged AVBP solution with high stats.
- antares.eqmanager.formula.avbp.equations.Theta(y, z)¶
Compute the cylindrical angle under the assumption x is the rotation-axis.
- antares.eqmanager.formula.avbp.equations.Ttotal(DictMassFractions, Htotal)¶
Absolute total temperature [K].
Computed with the absolut total enthalpy and the AVBP’s species_database.dat.
- antares.eqmanager.formula.avbp.equations.Ttotal_RMS(Ttotal, Ttotal2)¶
Total temperature root mean square [K].
Requires an averaged AVBP solution.
- antares.eqmanager.formula.avbp.equations.Ttotal_gamma0D(T, coeff_gamma0D)¶
Useful when computing under \(\gamma\) constant assumption.
\(Ttotal_{\gamma_{0D}} = T (1 + \frac{\gamma_{0D} - 1}{2} M_{\gamma_{0D}}^2)\)
- antares.eqmanager.formula.avbp.equations.Ttr(DictMassFractions, Htr)¶
Relative total temperature.
- antares.eqmanager.formula.avbp.equations.V(u, v, w)¶
- antares.eqmanager.formula.avbp.equations.Vm(Wm)¶
- antares.eqmanager.formula.avbp.equations.Vr(R, y, z, v, w)¶
- antares.eqmanager.formula.avbp.equations.Vt(R, y, z, v, w)¶
- antares.eqmanager.formula.avbp.equations.W(Wx, Wr, Wt)¶
- antares.eqmanager.formula.avbp.equations.Wm(Wx, Wr)¶
- antares.eqmanager.formula.avbp.equations.Wr(Vr)¶
- antares.eqmanager.formula.avbp.equations.Wt(omega, R, Vt)¶
- antares.eqmanager.formula.avbp.equations.Wx(u)¶
- antares.eqmanager.formula.avbp.equations.Wy(Wt, Vr, Theta)¶
- antares.eqmanager.formula.avbp.equations.Wz(Wt, Vr, Theta)¶
- antares.eqmanager.formula.avbp.equations.alpha(Vt, Vm)¶
Sign is consistent with AVBP’s angle_alpha.
- antares.eqmanager.formula.avbp.equations.beta(Wt, Vm)¶
Relative flow angle in degrees.
The sign is consistent with alpha, so it is the opposite of the convention used in elsA computations.
- antares.eqmanager.formula.avbp.equations.c(P, rho, gamma)¶
Sound speed [m/s].
\(c = \sqrt{\gamma P / \rho}\)
- antares.eqmanager.formula.avbp.equations.c_gamma0D(P, rho, gamma0D)¶
Useful when computing under \(\gamma\) constant assumption.
\(c = \sqrt{\gamma_{0D} P / \rho}\)
- antares.eqmanager.formula.avbp.equations.coeff_gamma0D(gamma0D, mach_gamma0D)¶
Useful when computing under \(\gamma\) constant assumption.
\(coeff\_gamma0D = 1 + \frac{\gamma_{0D} - 1}{2} M^2\)
- antares.eqmanager.formula.avbp.equations.exp_gamma0D(gamma0D)¶
Useful when computing under \(\gamma\) constant assumption.
\(exp\_gamma0D = \frac{\gamma_{0D}}{\gamma_{0D} - 1}\)
- antares.eqmanager.formula.avbp.equations.gamma(Cp, Cv)¶
Heat capacity ratio [-].
\(\gamma(T) = \frac{C_p(T)}{C_v(T)}\)
- antares.eqmanager.formula.avbp.equations.h(DictMassFractions, T)¶
Mixture enthalpy [J/kg].
Sum of formation and sensible enthalpies \(h = \sum_{k=1}^N Y_k (h_{s,k} + \Delta h^{0}_{f,k})\)
- antares.eqmanager.formula.avbp.equations.hs(Eint, P, rho)¶
Mass sensible enthalpy [J/kg].
\(h_s = E_{int} + P/\rho\)
- antares.eqmanager.formula.avbp.equations.mach(V, c)¶
Absolute mach number.
- antares.eqmanager.formula.avbp.equations.mach_gamma0D(V, c_gamma0D)¶
Useful when computing under \(\gamma\) constant assumption.
- antares.eqmanager.formula.avbp.equations.mach_rel(W, c)¶
Relative mach number.
- antares.eqmanager.formula.avbp.equations.mixture_W(DictMassFractions)¶
Mean molecular weight of the mixture W [kg].
\(W ={ (\sum_{k=1}^N \frac{Y_k}{W_k}) }^{-1}\) with \(Y_k\) and \(W_k\) respectively mass fraction and molecular weight of specie \(k\). Computed with AVBP’s species_database.dat.
- antares.eqmanager.formula.avbp.equations.mixture_sensible_enthalpy(DictMassFractions, T)¶
Mixture mass sensible enthalpy [J/kg].
\(h_s = \sum_{k=1}^N Y_k h_{s,k}\)
NOTE: Equal to \(h_s\) but computed with species_database.dat
- antares.eqmanager.formula.avbp.equations.phi(u, Vr)¶
Meridional flow angle in degrees.
- antares.eqmanager.formula.avbp.equations.rgas(mixture_W)¶
Mixture specific gas constant [J/kg/K].
\(r_{gas} = R/W\)
with, respectively \(R\) and \(W\) associated to the perfect gas constant and the mean mixture molecular weight.
- antares.eqmanager.formula.avbp.equations.s(DictMassFractions, T)¶
Mass mixture entropy [J/kg].
\(s = \sum_{k=1}^N Y_k s_k\)
- antares.eqmanager.formula.avbp.equations.u(rhou, rho)¶
- antares.eqmanager.formula.avbp.equations.v(rhov, rho)¶
- antares.eqmanager.formula.avbp.equations.w(rhow, rho)¶