Cerfacs Enter the world of high performance ...

The 22 May 2015

PhD Defense: Lucas ESCLAPEZ- Numerical study of ignition and inter-sector flame propagation in gasturbine



For safety reason, in-flight relight of the engine must be guaranteed over a wide range of operating conditions but the increasing stringency of pollutant emission constraints requires the development of new aero-engine combustor whose design might be detrimental to the ignition capability. To improve the knowledge of the ignition process in aeronautical gas turbines and better combine conflicting technological solutions, current research relies on both complex experimental investigation and high fidelity numerical simulations. In this work, numerical study of the ignition process in gas turbines from the energy deposit to the light-around is performed with several objectives: increase the level of confidence of Large Eddy Simulations tool for the analysis of the ignition process, investigate the mechanisms controlling ignition in conditions representative of realistic aeronautical gas turbine flows and improve the low-order methodologies for the prediction of ignition performance. In a first part, LES of the single burner installed at CORIA (France) is carried out and allows to highlight the LES accuracy and to build a database on which the main mechanisms controlling the ignition success are identified. Based on these results, a methodology is developed to predict the ignition performance at a low computational cost using the non-reacting flow statistics only. In a second part, the light-around process is studied on two experimental set-ups and the very good agreement of the LES results with experiments is the starting point from an analysis of the mechanisms driving the flame propagation process.

Keywords : Ignition, Gas turbines, Light-around, Large Eddy Simulations, Turbulent combustion


Pr. B. FIORINARefereeEcole Central Paris, EM2C
Pr. F. HALTERRefereeUniversité Orléans, PRISME
Pr. M. BELLENOUEMemberENSMA Poitier, P
Dr.-Ing. S. RICHARDInvited memberTURBOMECA (Safran)


Thierry Poinsot officially entered the French Academy of Sciences

CERFACS |  8 November 2021

Thierry Poinsot officially entered the French Academy of Sciences on October 12. See presentation here :Read more

The AVBP code from CERFACS at the heart of for PRACE projects from the 23rd call

CERFACS |  30 September 2021

Cerfacs is involved in three PRACE projects of the 23rd call for which hour allocation runs from 01/10/2021 to 30/09/2022. Researchers from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) and IMFT (UMR 5502) laboratories have earned projects entirely based on the use of the LES solver developed by Cerfacs AVBP and involve the support of experts from the CFD and COOP teams underling the importance and effectiveness of collaborations between French labs and Cerfacs. Alexis Giauque from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) has obtained not only one but two PRACE projects! The first project LESFAN (RA0101, 30 000 000 CPU hours on Irene/Rome TGCC) is based on the use of AVBP in the turbomachinery version to study the generation of noise by a fan of a real airplane engine. The second, PRACE-EDGES (RA0101, 40 000 000 CPU hours on Irene/Rome TGCC) focuses on LES modeling of dens gas in complex geometries. To do so, the LMFA Team has developed advanced thermodynamic closures in AVBP allowing the direct simulation of such flows. Laurent Selle from IMFT (UMR 5502) has received CPU hours for the GASTON project (RA0061, 30 000 000 CPU hours on Marenostrum BSC) which aims to study the structure of hydrogen flames in porous materials. For this, IMFT and Cerfacs will perform coupled simulations considering the reactive flow with AVBP as well as the conduction in the porous medium with AVTP which is known to play an central role in the flame stabilization process. Carlos Perez Arroyo from IMFT (UMR 5502) received 16 Mh CPU hours on Joliot-Curie Skylake partition to support his project WONDER.Read more