Cerfacs Enter the world of high performance ...

DECLIPP Challenge

Variability and climate change at decadal scales

Improving the understanding of decadal variability and climate change is of utmost importance for decision makers in various areas such as the management of water and energy, or public health. The  goal is to determine if climate change and the events that we observe are the result of natural variability or are irreversible result of anthropogenic climate change. This question underlies the determination of the uncertainties of climate change in the near future and research on decadal climate variability and its prediction.

OCCIPUT Project : Upper Ocean Temperature

OCCIPUT Project : Upper Ocean Temperature

The DECLIPP challenge aims to develop new methods to address the problem of decadal prediction based on the development and use of a coupled ocean-atmosphere model. This approach requires high spatial resolution models and the analysis of ocean observations to initialize the component ocean model. Another long-term goal of DECLIPP is to improve the understanding of the internal variability of the climate and its interaction with the climate system response to external forcings, whether natural or anthropogenic.

This challenge is based on several research areas such as the study of models biases in order to remove them, ensemble generation technics or  the development of downscaling techniques. It includes research on the impact of future decadal changes such as hydrological projections on France or the evolution of temperature extreme events.

Pages linked to this challenge


Cerfacs funded for the EoCoE-II European center of excellence

superadmin |  11 October 2018

The European center of excellence EoCoE-II brings together 20 partners from 7 European countries around exascale computing for energy-oriented numerical models. As a follow-up to the proof-of-principle phase of EoCoE (energy-oriented center of excellence), EoCoE-II will build on its unique,...Read more

Cerfacs funded by the EU for more than 1 MEuros thanks to the IS-ENES3 and ESiWACE2 projects

superadmin |  4 October 2018

IS-ENES3 is the third phase of the distributed e-infrastructure of ENES (European Network for Earth System modelling), enabling the European climate modelling community to address the challenges of international intercomparison project CMIP6. IS-ENES3 will develop, document and deploy new and...Read more