Cerfacs Enter the world of high performance ...


Definition of the domain

Climate modeling is to replicate more or less simplified the coupled behavior of the atmosphere, oceans and land surfaces at various spatial scales (from region to globe scales) or time (from season to century scales or more) . A useful tool for understanding the complexity of climatic phenomena is to numerically simulate the evolution coupled various components of the Earth system, after translating the physical principles governing the form of mathematical equations. CERFACS brings many strengths to meet this challenge by continuously improving the quality of these couplings, on more and more powerful computers , and analyzing in depth the results of many simulations it performs.

Challenges, issues and context

The intrinsic climate variability, from monthly to decadal scales, overlaps the global warming resulting from human activities. Detection of climate change and their allocation to various causes is a scientific problem that requires combining Earth observation, modeling of coupled and complex physical phenomena and scientific computing.

Cerfacs actively contributes to the IPCC exercises (Intergovernmental Panel on Climate Change) which regularly publishes a detailed report on the present climate and its projection throughout the century. Advances in climate modeling, in particular through the intensification of Earth observation and increasing computer power, reduce uncertainties in climate projections.

OCCIPUT Project : Sea Surface Temperature

OCCIPUT Project : Sea Surface Temperature

Research axes at CERFACS

Research areas conducted in CERFACS through climate modeling are:

  • Climate variability on seasonal to decadal scales
  • Predictability and decadal forecasts
  • Anthropogenic disturbance and impacts

Tools developed or used


Climate Partners

Climate Partners



First 360-degrees Large-Eddy Simulation of a full engine

Jérôme DOMBARD |  17 June 2020

Within the PRACE project FULLEST (First fUlL engine computation with Large Eddy SimulaTion), a joint collaboration between CERFACS, SAFRAN and AKIRA technologies, Dr. C. Pérez Arroyo (post doctoral fellow at CERFACS) has carried out under the supervision of Dr. J. Dombard the first high-fidelity simulation of a part of the real engine DGEN380 (for now, from the fan to the combustion chamber). This 360-degrees integrated large-eddy simulation contains around two billion cells on the three instances, carried out with the AVBP code of CERFACS.  The CPU cost is obviously large but still within reach, performing around one turn of fan during 5 days over 14400 skylake cores. Post-treatments are in progress and already show, among other complex phenomena, a strong interaction between the high pressure compressor and the combustion chamber (see forthcoming paper GT2020-16288 C. Pérez Arroyo et al). Below a video showing: in the fan an isosurface at mid-height of the vein colored by the Mach number, in the high pressure compressor a gradient of density, in the bypass of the combustion chamber the static pressure and in the flame tube a temperature field. One of the goals of the project is to create a high-fidelity unsteady database to study interactions between modules and may help other teams to develop new lower order models and/or validate existing ones. Beyond the feasibility and the maturity of the AVBP code, this kind of calculation is an important milestone for the aeronautical industry and would allow to apprehend earlier in the design the effect of integration and installation and thus, to reduce the cycle and therefore the cost of the future aircraft engines. We acknowledge PRACE for awarding us access to Joliot-Curie (Genci) hosted at CEA/TGCC, FRANCE, Safran Tech and DGAC fundings within the project ATOM, along with the invaluable technical support at...Read more

B. Cuenot distinguished as Program Chair of international Symposium on Combustion

superadmin |  29 May 2020

B. Cuenot has been distinguished as Program Chair for the 39th International Symposium on Combustion, to be held in Vancouver (Canada) in 2022. The International Symposium on Combustion is a major event for the combustion community, where the current best research is presented.Read more