Cerfacs Enter the world of high performance ...

The 22 February 2018 at 14h00

PhD Defense – Christophe COREIXAS : High-order extension of the recursive regularized Lattice Boltzmann Method

Marie LABADENS |  SALLE DE CONFÉRENCE JEAN-CLAUDE ANDRÉ |  

Abstract

This thesis is dedicated to the derivation and the validation of a new collision model as a stabilization technique for high-order lattice Boltzmann methods (LBM). More specifically, it intends to stabilize simulations of: (1) isothermal and weakly compressible flows at high Reynolds numbers, and (2) fully compressible flows including discontinuities such as shock waves.

The new collision model relies on an enhanced regularization step. The latter includes a recursive computation of nonequilibrium Hermite polynomial coefficients. These recursive formulas directly derive from the Chapman-Enskog expansion, and allow to properly filter out second- (and higher-) order nonhydrodynamic contributions in underresolved conditions. This approach is even more interesting since it is compatible with a very large number of velocity sets.

This high-order LBM is first validated in the isothermal case, and for high-Reynolds number flows. The coupling with a shock-capturing technique allows to further extend its validity domain to the simulation of fully compressible flows including shock waves. The present work ends with the linear stability analysis (LSA) of the new approach, in the isothermal case. This leads to a proper quantification of the impact induced by each discretization (velocity and numerical) on the spectral properties of the related set of equations. The LSA of the recursive regularized LBM finally confirms the drastic stability gain obtained with this new approach.

Keywords : Lattice Boltzmann Method, Regularization, Compressible, Linear Stability

Jury
François DUBOIS                         University of Paris Sud, Orsay                       Referee
Florian DE VUYST                       University of Technology, Compiègne            Referee
Nicolas GOURDAIN                     ISAE, Toulouse                                               Member
Irina GINZBURG                          IRSTEA, Antony                                             Member
Jonas LATT                                  University of Geneva                                      Member
Guillaume PUIGT                         CERFACS, Toulouse                                       Advisor

NEWS

Thierry Poinsot officially entered the French Academy of Sciences

CERFACS |  8 November 2021

Thierry Poinsot officially entered the French Academy of Sciences on October 12. See presentation here :Read more


The AVBP code from CERFACS at the heart of for PRACE projects from the 23rd call

CERFACS |  30 September 2021

Cerfacs is involved in three PRACE projects of the 23rd call for which hour allocation runs from 01/10/2021 to 30/09/2022. Researchers from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) and IMFT (UMR 5502) laboratories have earned projects entirely based on the use of the LES solver developed by Cerfacs AVBP and involve the support of experts from the CFD and COOP teams underling the importance and effectiveness of collaborations between French labs and Cerfacs. Alexis Giauque from ECL/LMFA UMR5509 (Ecole Centrale de Lyon) has obtained not only one but two PRACE projects! The first project LESFAN (RA0101, 30 000 000 CPU hours on Irene/Rome TGCC) is based on the use of AVBP in the turbomachinery version to study the generation of noise by a fan of a real airplane engine. The second, PRACE-EDGES (RA0101, 40 000 000 CPU hours on Irene/Rome TGCC) focuses on LES modeling of dens gas in complex geometries. To do so, the LMFA Team has developed advanced thermodynamic closures in AVBP allowing the direct simulation of such flows. Laurent Selle from IMFT (UMR 5502) has received CPU hours for the GASTON project (RA0061, 30 000 000 CPU hours on Marenostrum BSC) which aims to study the structure of hydrogen flames in porous materials. For this, IMFT and Cerfacs will perform coupled simulations considering the reactive flow with AVBP as well as the conduction in the porous medium with AVTP which is known to play an central role in the flame stabilization process. Carlos Perez Arroyo from IMFT (UMR 5502) received 16 Mh CPU hours on Joliot-Curie Skylake partition to support his project WONDER.Read more

ALL NEWS