Cerfacs Enter the world of high performance ...

MODEST Challenge

Environment and Security Modelling

The impact of human activities on the environment and security is an important social issue. CERFACS teams have developed in recent years recognized expertise in the field of natural and industrial risks through their contributions to the projects related to the monitoring of the environment and natural resources, natural and industrial sites at risk. This work was undertaken in synergy with CERFACS partners.  The main  activities are:

  • the impact of transportation modes on climate and atmospheric composition;
  • the air quality at regional and global scales;
  • the simulation of forest fire;
  • the simulation and flood forecasting;
  • the study of industrial sites and explosion risks.

The diversity of the studied risks  results in a diversity of objectives (monitoring, alerting, re-analysis, scenario …), spatio-temporal scales (from a few hundred meters to several hundred kilometers), simulation tools (CFD, hydrodynamics, front propagation, aerodynamics) and algorithms to estimate the risk (direct numerical simulation, optimization and assimilation methods, methods for quantifying uncertainties, multi-dimensional code coupling and / or multi-physics ).

The MODEST challenge integrates a strong digital component and mobilizes all CERFACS teams.  The MODEST Challenge is related to the transverse lines of research “Data Assimilation and Optimization“, “Uncertainties” and the application axis “Environment“, “Combustion“, “Aerodynamics” and “Climate“.

Objectives

The MODEST Challenge aims to develop:

  • innovative methodological tools (modeling at different scales, coupling between physical and chemical processes, code coupling and data assimilation) applied to concrete problems encountered by the CERFACS associate members;
  • applications to the decision aspiring for operational, particularly for air quality, the spread of forest fires and hydrology / hydraulics.

Projects

Started in late 2014, the MODEST Challenge enabled the initiation of works in the fields of air quality and hydrology, notably through  European projects (MACC, EoCoE) and national projects (LEFE, SCHAPI, TOSCA) .

Flood forecasting and flood

hydro

Multi-dimensionnal 1D/2D hydraulics coupling en hydraulique, with data      assimilation on the Adour.

 

 

Modeling and flood forecasting answer a major challenge: managing water resources and natural hazards. At CERFACS, data assimilation methods are implemented to improve the predictive capacity of hydraulic numerical models limited by uncertainties on knowledge of watersheds, meteorological, hydrological and geographical. The DAMP platform enables real-time forecasting of floods from a river hydraulics code. Works multi-dimensional coupling for 1D / 2D hydraulics allow to model complex flows by limiting the cost calculations in order  to meet the operational and industrial constraints.

 

 

More about it…

 

Wildland fire spread and emissions

front_fire

Corrections of simulated fire front (blue) by the assimilation of aribone observations (gray) to obtain an analyzed front position.

 

The improvement of real-time forecasting systems for the spread of forest fires and associated emissions paves the way for direct applications on emergency fire risk management and quality management of the regional air and climate scale. The FIREFLY platform, co-developed by CERFACS and the University of Maryland (Dept. of Fire Protection Engineering, USA) is based on a comprehensive set-data assimilation algorithm type Kalman filter, implemented on a model semi-empirical spread of fire front. This system combines parameter estimation (surface wind, humidity and plant fuel properties) and state estimation (the position of the fire front) to improve the prediction of the position of the fire front in real time.

 

 

 

More about it…

 

Aviation and environment

Evaluation de l'impact des émissions anthropiques

 

CERFACS assesses the impact of anthropogenic emissions that affect atmospheric chemistry and radiation balance by complex and indirect mechanisms (streaks of water vapor condensation on aerosols, soot particles responsible for the formation of cirrus clouds, emissions ‘nitrogen oxides …) that disrupt the natural cycles, including that of ozonne, which, combined with other chemical cycles, have an impact on the anthropogenic greenhouse effect

 

 

NEWS

Catherine Lambert awarded Officer in the national order of Merit

Brigitte Yzel |  31 May 2022

Catherine LAMBERT, President of Cerfacs, has been promoted to the grade of officer in the national order of Merit, on the proposal of Mrs. Frédérique Vidal, Minister of Higher Education, Research and Innovation. Antoine PETIT, President and CEO of the CNRS, presented the insignia to Catherine LAMBERT during a ceremony that brought together many actors from the space, aeronautics, environment and digital sectors. Antoine PETIT: "Catherine's interpersonal skills, her ability to step back and understand very different environments (research, industry, politics) in order to develop a collective vision are the hallmarks of her career. Catherine is one of those people with whom you naturally feel confident, with whom you want to build something that goes beyond all of us to go further. With this honor, the Cerfacs teams are also rewarded.Read more


Sparse Days in Saint-Girons IV

Brigitte Yzel |  29 March 2022

Sparse Days Meeting 2022 🗓️  20-22 June 2022  @ Saint-Girons, France   🌐   Sparse Days 2022 will be held in Saint-Girons, Ariège, from 20-22 June. This enhanced version of Sparse Days is being co-organized by Cerfacs and ENSEEIHT/IRIT. It will be the fourth meeting in Saint- Girons following the tradition of the previous meetings held in 1994, 2003, and 2015. The tradition involves coupling our highly successful annual technical meeting with the ambience and hospitality of this wonderful Pyrenean town which encourages fruitful informal exchanges between participants.    Read more

ALL NEWS